丹参酮ⅡA对奥沙利铂诱导的外周神经病变的保护作用

许凯1 成薇婷2 胡作为2 王珊2

摘要 目的 观察丹参酮ⅡA对奥沙利铂诱导的外周神经病变（oxaliplatin induced peripheral neuropathy，OINP）的防治作用及对降钙素基因相关肽（calcitonin gene related peptide，CGRP）和神经生长因子（nerve growth factor，NGF）表达的影响。方法 采用分段随机法将36例应用奥沙利铂方案化疗的Ⅰ～Ⅲ期消化道恶性肿瘤患者分为丹参酮组（18例，分在奥沙利铂化疗前1天起应用丹参酮ⅡA，每天80mg，连用3天）和对照组（18例，仅进行含奥沙利铂方案化疗）。完成4周期化疗后，评价OINP的发生程度和发生率；应用肌电图诱发电位仪检测腓总神经感觉神经传导速度（sensory nerve conduction velocity，SNCV）和运动神经传导速度（motor nerve conduction velocity，MCNV），并分别检测两组治疗前后血清CGRP及NGF水平，采用直线相关分析评价CGRP及NGF水平与OINP的相关性。结果 丹参酮组化疗后OINP发生率为27.8%（5/18），明显低于对照组的55.6%（10/18），差异有统计学意义（P＜0.05）。与对照组比较，两组化疗后腓总神经SNCV及MCNV均减慢，血清NGF水平降低，CGRP明显升高（均P＜0.05）。与对照组比较，丹参酮组治疗后腓总神经SNCV及MCNV明显增快，血清NGF水平升高，CGRP水平降低（均P＜0.05）。直线相关分析结果表明，NGF表达水平与外周神经病变呈负相关，CGRP表达与神经毒性呈正相关（P＜0.05）。结论 丹参酮ⅡA能降低OINP的发生率，可能与抑制CGRP表达及上调NGF活性有关。

关键词 奥沙利铂；外周神经病变；丹参酮ⅡA；降钙素基因相关肽；神经生长因子

Effect of Tanshinone II A in Preventing and Treating Oxaliplatin Induced Peripheral Neuropathy

XU Kai1, CHENG Wei-ting2, HU Zuo-wei2, and WANG Shan2 1 Department of Orthopedics, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan (430030); 2 Department of Oncology, Integrated Traditional Chinese and Western Medicine Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan (430020)

ABSTRACT Objective To observe preventive and therapeutic effects of Tanshinone II A (T II A) on oxaliplatin induced peripheral neuropathy (OINP) and to explore its effects on the expression of calcitonin gene related peptide (CGRP) and never growth factor (NGF). Methods Totally 36 phase Ⅱ～Ⅲ patients with malignant tumor of digestive tract undergoing chemotherapy program with oxaliplatin, were equally assigned to the T II A group (using T II A at 80 mg/day 1 day before oxaliplatin chemotherapy for 3 successive days) and the control group (using chemotherapy program with oxaliplatin alone) by segmented randomization. After 4 cycles of chemotherapy, the incidence degree and incidence of OIPN were evaluated. Sensory nerve conduction velocity (SNCV) and motor nerve conduction velocity (MCNV) were tested by EMG evoked potential device. Serum levels of CGRP and NGF were also detected in the two groups before and after chemotherapy. The correlation of serum levels of CGRP and NGF to OIPN was assessed using linear correlation analysis. Results After chemotherapy the OIPN incidence was 27.8% (5/18 cases) in the T II A group, obviously lower than that in the control group (55.6%, 10/18 ca-

基金项目：国家自然科学基金资助项目（No. 30650006）；武汉市卫生局科研课题（No. WX12C07）

作者单位：1. 华中科技大学同济医学院附属同济医院普外科（武汉 430030）；2. 华中科技大学同济医学院附属中西医结合医院肿瘤科（武汉 430020）

通讯作者：成薇婷, Tel: 027 - 85332224, E-mail: joyvct@163.com

DOI: 10.7661/CJIM.2016.05.0559
ses; \(P < 0.05 \)). Compared with before treatment in the same group, SNCV and MNCV of common peroneal nerve were slowed down, serum NGF levels decreased, and serum CGRP levels obviously increased in the two groups (all \(P < 0.05 \)). Compared with the control group after treatment, SNCV and MNCV of common peroneal nerve were obviously accelerated, serum NGF levels increased, and serum CGRP levels obviously decreased in the T II A group (all \(P < 0.05 \)). Results of linear correlation analysis indicated serum NGF level was negatively correlated with peripheral neuropathy (PN), serum CGRP expression was positively correlated with neurotoxicity (\(P < 0.05 \)). Conclusion T II A could reduce the incidence of OIPN, which might be associated with inhibiting the expression of CGRP and up-regulating NGF activities.

KEYWORDS oxaliplatin; peripheral neuropathy; Tanshinone II A; calcitonin gene related peptide; never growth factor

奥沙利铂因其低毒、高效、无交叉耐药等优势，目前已成为多种恶性肿瘤的一线化疗方案。然而，该药极性诱发外周神经病(\textit{oxaliplatin induced peripheral neuropathy, OIPN}), 多表现为剂量依赖性的神经病理性痛，由于目前尚无确切的防治措施，加重了肿瘤患者的身心痛苦\(^1\)。本研究在奥沙利铂化疗期间同时应用丹参酮 II A，观察其对奥沙利铂外周神经毒性的作用，并对治疗前后血清降钙素基因相关肽（\textit{calcitonin gene-related peptide, CGRP}）及神经生长因子（\textit{nerve growth factor, NGF}）的表达水平进行检测，以期为 OIPN 的防治提供依据。

资料与方法

1 诊断标准 参照 NCCN Guideline 标准\(^1\), OIPN 是由于应用奥沙利铂后诱发的外周神经病变, 临床上常表现为静注奥沙利铂数小时或数天内，患者外周神经出现急性、短暂的冷刺激过敏或感觉异常现象。

2 纳入与排除标准 纳入标准: 年龄 \(<70\) 岁; 经病理学或细胞学证实的 II ～ III 期恶性肿瘤, 均适合应用含奥沙利铂的方案化疗; Karnofsky 评分 \(>60\) 分; 无明显重要脏器功能异常; 1 个月内未接受过其他化疗。排除标准: 原有神经系统疾病及可引起外周神经异常的疾病, 如糖尿病。

3 一般资料 36 例均为 2012 年 1 月—2014 年 6 月华中科技大学同济医学院附属中西医结合医院肿瘤科符合纳入标准的住院患者。其中男性 21 例, 女性 15 例, 年龄 17 ～ 67 岁, 平均 (48.3 \(\pm \) 7.6) 岁。采用分层随机分法为对照组和丹参酮组, 每组 18 例。丹参酮组男性 11 例, 女性 7 例; 其中胃癌 10 例, 结直肠癌 6 例, 十二指肠癌 1 例, 小肠癌 1 例, 平均病程 (9.7 \(\pm \) 2.8) 天。对照组男性 10 例, 女性 8 例, 其中胃癌 9 例, 结直肠癌 8 例, 胆管癌 1 例, 平均病程为 (11.9 \(\pm \) 3.5) 天。两组年龄、性别、病情程度及病程比较, 差异无统计学意义 (\(P > 0.05 \))。本研究经华中科技大学同济医学院附属中西医结合医院伦理委员会批准。

4 治疗方法 所有患者均根据病种和病理类型制定化疗方案。两组均给予含奥沙利铂的方案治疗, 用药如下: 奥沙利铂 (50 mg/支, 南京制药厂有限公司, 批号: 110810) 130 mg/m\(^2\) (d1), 5-氟尿嘧啶 (5-Fu, 250 mg/支, 天津金耀药业有限公司, 批号: 110519) 500 mg/m\(^2\) (d1 \(\sim \) 5), 亚叶酸钙 (0.1 g/支, 江苏恒瑞医药股份有限公司, 批号: 110222) 200 mg/m\(^2\) (d1 \(\sim \) 5), 每 21 天重复 1 次。对照组采用单一半化疗 (不含联合放化疗), 期间使用盐酸托烷司琼注射液 (5 mg/支, 南京制药厂有限公司, 批号: 110908) 5 mg/天, 地塞米松 (5 mg/支, 天津金耀药业有限公司, 批号: 110808) 5 mg/天, 以上药物采用静脉滴注, 每天 1 次。丹参酮组在应用奥沙利铂前 1 天加用丹参酮 II A 注射液 (10 mg/支, 上海第一生化药业有限公司, 批号: 110614) 80 mg 加入 5% 葡萄糖液 500 mL 中静脉滴注, 每天 1 次, 连用 3 天。两组均连续化疗 4 个周期。

5 观察指标及评价方法

5.1 OIPN 分级和发生情况评价 根据 Levi 专用感觉神经毒性分级标准\(^2\) 评定: 0 级: 无感觉异常; 1 级: (遇冷诱发) 感觉异常或感觉迟钝, 1 周内可以完全消退; 2 级: 感觉异常或感觉迟钝, 3 周内可以完全消退; 3 级: 感觉异常或感觉迟钝, 3 周内不能完全消退; 4 级: 感觉异常或感觉迟钝, 伴有功能障碍, 肢体瘫痪甚至死亡。评价两组外周神经毒性反应的发生情况, 如: 口周麻木、肢端麻木、疼痛以及感觉异常等, 并根据评级标准统计两组外周神经毒性程度。

5.2 胞脱神经传导速度检测 所有患者在治疗前后均采用 Key Point 四通道高速肌电诱发电位仪检测胞脱神经传导速度, 室温保持在 23 \(\sim \) 26°C, 受检者
平卧清醒状态下刺激腓总神经，检测包括感觉神经传导速度 (sense nerve conduction velocity, SNCV) 和运动神经传导速度 (motor nerve conduction velocity, MNCV)。

5.3 血清 CGRP 及 NGF 水平检测 在应用奥沙利铂化疗前及 4 周期化疗后，检测两组血清 CGRP 及 NGF 表达水平。参照 CGRP 试剂盒 (武汉基因美学生物科技公司) 说明书，取静脉血 2 ml，分离 0.1 ml 血清，-80 ℃ 冻存，CGRP 单克隆抗体包被酶标板结合血清中 CGRP 因子，抗人抗体结合单抗，显色后在分光光度计下读取数值，得到 CGRP 含量，每组均做 3 个平行复孔，计算平均值。参照 NGF 检测试剂盒 (上海晶昊生物科技公司)，应用双夹心 ELISA 法检测 NGF 的含量。每组数据均测量 3 次，取平均值，同时比较两组治疗前后级别外周神经毒性患者血清 CGRP 及 NGF 表达水平。

6 统计学方法 采用 SPSS 11.0 软件进行统计分析，计量资料以 x ± s 表示，采用 t 检验，计数资料采用 x^2 检验，等级资料比较采用秩和检验，两变量相关关系采用直线相关分析，以 Pearson 相关系数表示，P < 0.05 为差异有统计学意义。

结果

1 两组 OPIN 分级及发生情况比较 (表 1) 所有患者均完成 4 个周期治疗。应用奥沙利铂后，两组均出现不同程度的外周神经毒副反应，其中丹参酮组外周神经毒副反应发生率为 27.8% (5/18)。对照组发生率为 55.6% (10/18)。丹参酮组外周神经毒副反应发生总例数明显低于对照组 (x^2 = 9.51, P < 0.05)。此外，同时应用奥沙利铂与丹参酮的过程中，

未观察到其他的严重不良反应。

2 两组治疗前后腓总神经 SNCV 及 MNCV 比较 (表 2) 与本组治疗前比较，两组治疗后腓总神经 SNCV 及 MNCV 均减慢 (P < 0.05)。与对照组治疗后比较，丹参酮组腓总神经 SNCV 及 MNCV 明显增快 (P < 0.05)

<table>
<thead>
<tr>
<th>组别</th>
<th>例数</th>
<th>时间</th>
<th>SNCV (m/s)</th>
<th>MNCV (m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>对照</td>
<td>18</td>
<td>治疗前</td>
<td>51.0 ± 2.6</td>
<td>49.1 ± 1.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>治疗后</td>
<td>34.1 ± 3.5</td>
<td>38.5 ± 1.9</td>
</tr>
<tr>
<td>丹参酮</td>
<td>18</td>
<td>治疗前</td>
<td>50.4 ± 2.7</td>
<td>48.3 ± 2.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>治疗后</td>
<td>42.4 ± 3.9</td>
<td>43.5 ± 2.6</td>
</tr>
</tbody>
</table>

注：与对照组治疗前比较，* P < 0.05；与对照组同期比较，† P < 0.05

3 两组治疗前后不同外周神经毒性分级患者血清 NGF 水平比较 (表 3, 图 1) 与本组治疗前比较，丹参酮组 NGF 表达水平明显降低 (Z = 3.71, P < 0.05)。随着外周神经受损程度加重，丹参酮组 NGF 表达水平逐渐降低。对照组治疗后 NGF 下降明显，当出现 3 级外周神经损害时，NGF 表达水平明显降低 (r = -0.49, P < 0.05)。在围药期 (奥沙利铂应用前 1 天起持续 3 天)，与对照组比较，丹参酮组 NGF 表达水平明显上调 (P < 0.05)。丹参酮组患者 NGF 水平亦与神经受损程度呈负相关，1 级和 2 级的 OPIN 患者 NGF 表达水平仍处于低水平 (r = -0.25, P < 0.05)。

4 两组治疗前后不同外周神经毒性分级患者外周 CGRP 水平比较 (表 4, 图 2) 与本组治疗前比较，丹参酮组 CGRP 蛋白水平明显升高，其表达水平与外周神经毒性严重程度呈正相关，即随着外周神经受损程度加重，CGRP 表达水平逐渐升高 (r = 0.88, P < 0.05)。治疗后丹参酮组 CGRP 表达水平明显低于对照组，但其水平亦与神经受损程度呈正相关 (r = 0.65, P < 0.05)。

5 两组治疗前后血清 CGRP 及 NGF 表达水平比较 (表 5) 与本组治疗前比较，两组治疗后血清 CGRP 水平降低，CGRP 水平明显升高 (均 P < 0.05)。与对照组治疗后比较，丹参酮组 CGRP 水平升高，CGRP 水平降低 (均 P < 0.05)。

<table>
<thead>
<tr>
<th>组别</th>
<th>例数</th>
<th>时间</th>
<th>0 级</th>
<th>1 级</th>
<th>2 级</th>
<th>3 级</th>
</tr>
</thead>
<tbody>
<tr>
<td>对照</td>
<td>18</td>
<td>治疗前</td>
<td>57.35 ± 2.25</td>
<td>57.16 ± 1.72</td>
<td>57.85 ± 0.80</td>
<td>57.88 ± 1.56</td>
</tr>
<tr>
<td></td>
<td></td>
<td>治疗后</td>
<td>48.28 ± 1.67</td>
<td>46.28 ± 2.89</td>
<td>45.92 ± 0.56</td>
<td>45.21 ± 3.85</td>
</tr>
<tr>
<td>丹参酮</td>
<td>18</td>
<td>治疗前</td>
<td>56.93 ± 2.66</td>
<td>56.09 ± 1.84</td>
<td>59.20</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>治疗后</td>
<td>52.14 ± 2.96</td>
<td>50.85 ± 2.33</td>
<td>49.65</td>
<td>—</td>
</tr>
</tbody>
</table>

注：统计分析时将丹参酮组发生 2 级不良反应患者数值并入 1 级组
肿瘤辅助和姑息治疗的一线选择

铂化疗的剂量限制性不良反应

注：A 为对照组，B 为丹参酮组。图 2 同

图 1 两组治疗前后不同外周神经毒性分级患者 NGF 表达水平比较

表 4 两组不同神经毒性分级患者血清 CGRP 表达水平比较 (ng/L, x±s)

<table>
<thead>
<tr>
<th>组别</th>
<th>例数</th>
<th>时间</th>
<th>0 级</th>
<th>1 级</th>
<th>2 级</th>
<th>3 级</th>
<th>4 级</th>
</tr>
</thead>
<tbody>
<tr>
<td>对照</td>
<td>18</td>
<td>治疗前</td>
<td>40.03 ± 1.23</td>
<td>41.22 ± 0.78</td>
<td>39.97 ± 2.27</td>
<td>40.42 ± 1.14</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>治疗后</td>
<td>50.35 ± 1.16</td>
<td>53.15 ± 1.24</td>
<td>56.08 ± 2.17</td>
<td>57.72 ± 3.27</td>
<td>—</td>
</tr>
<tr>
<td>丹参酮</td>
<td>18</td>
<td>治疗前</td>
<td>41.53 ± 2.22</td>
<td>40.68 ± 0.80</td>
<td>42.49</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>治疗后</td>
<td>46.14 ± 2.18</td>
<td>48.54 ± 1.87</td>
<td>52.93</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

注：统计分析时将丹参酮组发生 2 级不良反应数值并入 1 级组

图 2 两组治疗前后不同外周神经毒性分级患者 CGRP 表达水平比较

表 5 两组治疗前后 CGRP 及 NGF 表达水平比较 (ng/L, x±s)

<table>
<thead>
<tr>
<th>组别</th>
<th>例数</th>
<th>时间</th>
<th>NGF</th>
<th>CGRP</th>
</tr>
</thead>
<tbody>
<tr>
<td>对照</td>
<td>18</td>
<td>治疗前</td>
<td>58.23 ± 2.17</td>
<td>40.42 ± 1.48</td>
</tr>
<tr>
<td></td>
<td></td>
<td>治疗后</td>
<td>46.99 ± 2.35</td>
<td>54.94 ± 2.92</td>
</tr>
<tr>
<td>丹参酮</td>
<td>18</td>
<td>治疗前</td>
<td>56.87 ± 2.46</td>
<td>41.33 ± 2.05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>治疗后</td>
<td>52.47 ± 2.94*</td>
<td>46.82 ± 2.59*</td>
</tr>
</tbody>
</table>

注：与本组治疗前比较，*P < 0.05；与对照组同期比较，△P < 0.05

讨 论

含有奥沙利铂的联合化疗方案目前是消化道恶性肿瘤辅助和姑息治疗的一线选择。然而，接受奥沙利铂治疗 5～7 个月的患者中约 50% 以上发生中、重度 OIPN，甚至可能出现运动功能障碍。OIPN 是奥沙利铂化疗的剂量限制性不良反应，往往导致化疗中断，但

由于该病尚缺乏有效的防治方法，临床上患者不仅承受了更多的身心痛苦，而且也加重了经济和心理负担，严重影响患者生活质量。丹参酮ⅡA 是丹参的主要有效成分，目前广泛应用于心肌保护、保护神经缺血以及修复外周神经等疾病的治疗。丹参酮ⅡA 对中枢神经及外周神经均具有保护和修复的作用。当大脑局部缺血缺氧时应用丹参酮，ⅡA 能改善缺血，保护神经细胞。此外丹参酮ⅡA 能保护糖尿病引起的外周神经病理性疼痛模型大鼠脊髓背角神经元，从而缓解病理性疼痛程度。本研究结果发现，在奥沙利铂化疗期间应用丹参酮ⅡA 后，OIPN 的发生率明显下降。其中丹参酮组多为程度轻微的 1 级以下不良反应，占 94%，仅 1 例
极其重要的作用

变

用可以被丹参酮

入脊髓

所降低

疼痛

神经元中的神经肽

体内

由于奥沙利铂所诱导的

性因子

刺激脊髓背角神经元形成痛觉过敏以及持续的病理性

生

以改善奥沙利铂所诱导的

和

级不良反应

与

级以上的不良反应

和

级毒性反应

时

神经元的

防

以改善奥沙利铂所诱导的

和

为

的研究显示，应用奥沙利铂化疗4周期后，

FG

表达水平明显下降，且其下降程度与OIPN的

意

度相关，其血清水平与Levi感觉神经毒性呈

外周神经受损程度严重的患者，其

的表达明显受抑制，化疗前减少了33%。在围化疗期

应用丹参酮IIA后，尽管

表达水平较化疗前有所降低，但丹参酮组表达水平较化疗组明显上调。相

，奥沙利铂化疗后，GRP表达水平较化疗前明显升高，尤其在症状明显的

级外周神经病变患者体内，GRP血清含量较化疗前分别提高了40%和

与

不同，GRP的血清水平与OIPN的

神经受损程度呈正相关。预防性应用丹参酮IIA可以

减缓

表达水平的升高，提示丹参酮IIA可抑制

由于奥沙利铂所诱导的

释放，从而减少

刺激脊髓背角神经元形成痛觉过敏以及持续的病理性

。同时丹参酮IIA可以改善奥沙利铂所导致的

合成、释放的抑制作用，加强了神经的自我营养、

修复、防御能力。

综上所述，NGF和GRP在奥沙利铂诱导的外周神经病变中发挥了重要的作用，应用丹参酮IIA，可以改善奥沙利铂所诱导的NGF和GRP表达失调，从而缓解奥沙利铂所导致的神经病变。然而，本研究病例数较少，观察时间短，研究结果存在一定的局限性，待在后续的研究工作中增加病例数，进一步探讨丹参酮IIA对外周神经的保护机制，以及对NGF和GRP的具体调节机制，以期为OIPN的防治提供一条可能的途径。

参

文

献

