实验研究

补肾健脾活血三类复方对下丘脑—垂体—肾上腺—胸腺轴及CRF基因表达的影响

钟厉勇 沈自尹 蔡定芬 郑仲承 陈晓红

内容提要 目的：为从分子水平来阐明药物对肾阳虚证的主要调节点。方法：采用逆转录多聚酶链反应（RT-PCR）化学发光定量法、放射免疫及细胞免疫技术，观察补肾、健脾、活血三类复方分别对下丘脑—垂体—肾上腺—胸腺（HPAT）轴受抑制模型的下丘脑促肾上腺皮质激素释放因子（CRF）mRNA表达、神经内分泌和免疫功能的影响。结果：唯有补肾药可通过提高下丘脑CRFmRNA表达来保护HPAT轴免受外源性皮质醇的抑制；健脾药对免疫系统有直接的促进作用；而活血药对HPAT轴无任何影响。结论：药物对肾阳虚证的主要调节点定位在下丘脑。

关键词 补肾健脾活血 促肾上腺皮质激素释放因子 信使核糖核酸 下丘脑 皮质醇

Effect of Three Kinds (Tonifying Kidney, Invigorating Spleen, Promoting Blood Circulation) Recipes on the Hypothalamus–Pituitary–Adrenal–Thymus (HPAT) Axis and CRF Gene Expression ZHONG Li-yong, SHEN Zi-yin, CAI Ding-fang, et al Huashan Hospital, Shanghai Medical University, Shanghai (200040)

Objective: To observe the effect of tonifying Kidney (TK), invigorating Spleen (IS) and promoting blood circulation (PBC) recipes on the hypothalamus–pituitary–adrenal–thymus (HPAT) axis. Methods: reverse-transcription polymerase chain reaction, radioimmunoassay and cellular immunity techniques were used to observe the effects of TH, IS, PBC on the neuroendocrine and immune system of this experimental model which HPAT axis was inhibited by corticosterone. Results: only TK could avoid the depression of exogenous corticosterone, which by enhancing the expression of CRF mRNA in hypothalamus, and following the improvement of function of HPAT axis, that IS might have direct promotion on immune system, whereas without any effect of PBC on HPAT axis was observed. Conclusion: TK, IS and PBC recipes have different effects on HPAT axis.

Key words tonifying the Kidney, invigorating the Spleen, promoting blood circulation, Corticotropin-releasing factor messenger ribonucleic acid, hypothalamus, corticosterone

自从肾本质研究中发现肾阳虚证具有下丘脑—垂体及其所控制三个靶腺轴均有功能紊乱，并由此推论肾阳虚证的主要发病环节在下丘脑[1]，但尚未有直接的证据。本实验比较了三类不同复方对皮质醇大鼠下丘脑—垂体—肾上腺—胸腺（HPAT）轴及下丘脑促肾上腺皮质激素释放因子（CRF）信使核糖核酸（mRNA）表达的影响，试图从分子水平来阐明药物对肾阳虚证的

*国家自然科学基金重点项目（No.39230370）

1. 南京铁道医学院[南京 210008]；2. 上海医科大学华山医院；3. 中国科学院上海生物化学研究所；△导师

主要调节点。

材料与方法

1．药物制备 补肾药用补归黄[YG]，组成为附子、肉桂、熟地、山茱萸、山药、枸杞子、仙灵脾（代杜仲）、炙甘草，用量比例为2：1：3：2：3：3：1：1。健脾药用四君子汤[SJ]，组成为党参、白术、茯苓、炙甘草，按1：1：1：1比例组成。活血药用桃红四物汤[TH]，组成为桃仁、红花、生地、当归、川芎，用量比例1.5：1：3：1：1.5。
1.5±1.5。上述三类复方自行制备，分别水煎煮提，滤渣取上清，调药物浓度至200％，高压灭菌，4℃保存备用。

2. 动物分组及标本制备。雄性SD 大鼠50 只，体重230~250g，由上海医科大学动物中心提供，室温（22±1）℃，光照与黑暗时间为每12h更替，随机分为5组，每组10 只。皮质酮（CORT）组为模型组，按10mg/kg 皮下注射皮质酮，每天1 次，连续14 天，同时以蒸馏水代替药物灌胃；三个用药组为皮质酮加右归饮组（YG）, 皮质酮加四君子汤组（SJ）, 皮质酮加桃核红冬瓜汤组（TH）组，除每天皮下注射皮质酮，同时按10g/kg 各组所用药物灌胃；对照组以等体积蒸馏水代替皮质酮及蒸馏水代替药物灌胃。实验第15 天，所有动物快速处死，取新鲜下丘脑组织150~200 mg 抽提总RNA；无菌取脾脏1630 培养液作细胞免疫测定；取血液用4％EDTA 抗凝分离血浆，反应免疫法测定促肾上腺皮质激素（ACTH）及CORT 含量。

3. 主要试剂及仪器

3.1 引物及探针的设计合成。CRF 引物根据文献合成，引物15′端引物1，引物23′端引物2均来源于外显子2，21 mer。寡核苷酸探针依据CRF 基因内部序列自行设计，30 mer。上述引物及探针均由 DNA 自动合成仪（ABI3901 PCRmate EP,USA）合成。

3.2 总RNA 抽提试剂及cDNA 第一链合成试剂为 Gibco BRL 公司产品；PCR 试剂为 Promega 公司产品；寡核苷酸生物素标记试剂盒为 U.S.Bioch公司产品；随机引物荧光素 DNA 标记盒，PCR-Light™化验发光定量系统以及链亲和素包被的苯二氮革珠均为 Tropix 公司产品。仪器用DNA Thermal Cycler 为 Perkin Elmer 公司产品，单光子计数器为 Beckman 公司产品。

3.3 皮质酮及万应丸自购自 Sigma 公司；

H-TDR 购自中国科学院上海原子核研究所；

-ACTH 放射免疫药金价自Diagnostic Products 公司；

H-皮质酮放射免疫药金价自上海内分泌研究所；

CTLL-2 依赖细胞株购自上海医科大学肿瘤医院。检测按药盒说明及文献合成。

4. 下丘脑CRF mRNA的研究

4.1 CRF mRNA 的 RT-PCR 扩增。按 Gibco 公司试剂说明书方法做下丘脑总RNA 的抽提及第一链cDNA 的合成，再分别以生物素和荧光素标记引物1 和探针。扩增反应参数为 94℃ 1 min、55℃ 1 min、72℃ 1 min 20 s，30 个循环后，72℃ 延伸 5 min。鉴于PCR 发光定量系统的高灵敏性，为确保定量检测是在对数增长期内进行，必须确定PCR 循环数。图可见在3~20 个循环之间相对发光单位和循环数呈线性关系，25~30 个循环自平台期，故选择15 个循环数为本实验的循环参数，以确保定量检测是在线性范围内进行。取PCR 产物于1.2％琼脂糖凝胶电泳，EB 染色后，紫外光下可摄得阳性目的条带为720 bp。与文献报告一致，而未加CRFCDNA 的阴性对照未见此条带，故此720 bp 条带即为RT-PCR产物。

4.2 RT-PCR 产物的定量检测。按Tropix 公司PCR 化学发光定量系统说明书操作，用聚氯化氯素包被的苯二氮革珠捕获生物素标记的5′端引物所扩增的PCR 产物，通过碱性去除非标记的3′端引物，然后用一发光素标记的寡核苷酸探针与之杂交，再用抗发光素碱性磷酸酶复合物，SDDi 化学发光底物和SapphireⅡ™增敏剂反应后进行光信号定量测定，这种光信号与PCR 产物浓度成正比的。

5. 统计学处理。组间比较采用t 检验。

结 果

1. 三类复方对皮质酮大鼠血浆CORT 及ACTH 的影响 见表1。模型组在注射大剂量皮质酮14 天后，可见血浆CORT 及ACTH 含量明显下降，与对照组比较，P<0.01；YG 组血浆CORT 及ACTH 含量均受到保护，而有明显上升，与模型组比较，P <0.05；SJ 组血浆CORT 及ACTH 有轻微上升，但统计学无明显差异，TH 组对血浆CORT 及ACTH 无影响。

表1 5组大鼠血浆CORT和ACTH含量的比较

<table>
<thead>
<tr>
<th>组别</th>
<th>数量</th>
<th>CORT（ng/dl）</th>
<th>ACTH（pg/ml）</th>
</tr>
</thead>
<tbody>
<tr>
<td>对照</td>
<td>10</td>
<td>14.60±3.97</td>
<td>86.30±48.95</td>
</tr>
<tr>
<td>模型</td>
<td>10</td>
<td>1.54±0.97*</td>
<td>31.30±25.53*</td>
</tr>
<tr>
<td>YG</td>
<td>10</td>
<td>2.82±1.22△</td>
<td>66.05±23.57 △</td>
</tr>
<tr>
<td>SJ</td>
<td>10</td>
<td>3.05±1.56</td>
<td>57.63±50.25</td>
</tr>
<tr>
<td>TH</td>
<td>10</td>
<td>1.86±1.61</td>
<td>37.41±26.05</td>
</tr>
</tbody>
</table>

注：与对照组比较，*P<0.01；与模型组比较，△P<0.05。

2. 三类复方对皮质酮大鼠淋巴细胞增殖反应及IL-2受体的影响 见表2。模型组淋巴细胞对ConA 的增殖反应和ConA 诱发的IL-2水平明显下降，与对照组比较，P<0.05；YG
组和Sj组均可使受抑制的淋巴细胞增殖反应和IL-2水平升高，与模型组比较，P 均<0.05；而TH 组对受抑制的免疫功能无影响。

表2 5组大鼠淋巴细胞增殖反应及IL-2水平的比较（x±s）

<table>
<thead>
<tr>
<th>组别</th>
<th>鼠数</th>
<th>淋巴细胞增殖反应 (cpm)</th>
<th>IL-2 (ng/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>刘望</td>
<td>10</td>
<td>1257.2±54.3</td>
<td>81.20±9.0</td>
</tr>
<tr>
<td>模型</td>
<td>10</td>
<td>157.0±2.5</td>
<td>11.50±2.5</td>
</tr>
<tr>
<td>YG</td>
<td>10</td>
<td>10123.0±3.75</td>
<td>69.21±7.89</td>
</tr>
<tr>
<td>Sj</td>
<td>10</td>
<td>157.0±2.5</td>
<td>65.23±10.9</td>
</tr>
<tr>
<td>TH</td>
<td>10</td>
<td>768.0±678.8</td>
<td>43.82±5.45</td>
</tr>
</tbody>
</table>

注：与对照组比较，*P<0.05，与模型组比较，△P<0.05

3 三类复合对皮质酮大鼠下丘脑CRF>mRNA 表达的影响 见表3。模型组CRF>mRNA 无论是单光子计数或产物浓度均显著抑制，与对照组比较，P<0.01；YG 组能明显提高已受抑制CRF>mRNA 的表达量(P<0.01)，而Sj组和TH 组对已受抑制的下丘脑CRF>mRNA 表达并无调节作用。

表3 YG, Sj, TH 对皮质酮大鼠下丘脑CRF基因扩增产物浓度的影响（x±s）

<table>
<thead>
<tr>
<th>组别</th>
<th>鼠数</th>
<th>单光子计数 (×10^6)</th>
<th>产物浓度 (fmol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>刘望</td>
<td>10</td>
<td>0.5±0.1</td>
<td>52.53±13.0</td>
</tr>
<tr>
<td>模型</td>
<td>10</td>
<td>0.5±0.1</td>
<td>10.51±0.16</td>
</tr>
<tr>
<td>YG</td>
<td>10</td>
<td>8.7±1.7</td>
<td>32.41±0.68</td>
</tr>
<tr>
<td>Sj</td>
<td>10</td>
<td>5.9±0.7</td>
<td>11.39±0.14</td>
</tr>
<tr>
<td>TH</td>
<td>10</td>
<td>5.3±0.6</td>
<td>9.69±0.11</td>
</tr>
</tbody>
</table>

注：与对照组比较，*P<0.01，与模型组比较，△P<0.01

讨 论

1 三类复合对皮质酮大鼠HPAT轴的影响 本实验选用皮质酮大鼠模型是由于在胃炎的研究中表明肾皮质肾上腺皮质素的激充在于血清皮质素升高。可对大鼠的 HPAT轴呈负反馈调节，从而抑制自身肾上腺皮质以及胸腺也会造成 HPAT轴功能低下。大鼠采用皮质酮皮质素较符合其生理，故以此提高HPAT轴上的组织功能状态。在三类药物治疗组中有补肾组对HPAT轴的受抑制具有全面的保护作用：健脾组能直接提高细胞免疫功能；而活血组则无任何保护作用。说明补肾的调节作用侧重于对神经内敏系统，并影响免疫，而健脾则侧重于对免疫功能的调节，这与以往的实验结果是相符的。[5]

2 关于检测下丘脑CRF>mRNA表达的方法 近年研究应急状态下的下丘脑CRF>mRNA表达多采用原位杂交技术，利用一个可以与CRF>mRNA互补的探针，在标记了同位素、地高辛或生物素后与下丘脑组织切片杂交，通过光密度扫描能对应地对CRF>mRNA表达进行半定量分析。至于Northern印迹法也只有在基因表达量增加时才能检出，故敏感性低。本实验动物模型属于下丘脑受抑制，其CRF>mRNA表达量少，用上述方法不易测出。1993年Louis和 Frasier分别用高灵敏度的RT-PCR，成功地从CRF>mRNA表达极微少的组织，如胃腺、心肌、肾脏、胸腺、睾丸等检出较强的CRF>mRNA表达，说明RT-PCR技术是检测mRNA低水平表达的高灵敏手段，经过新的化学发光法，使定量结果准确可靠。

3 本研究采用药物验证在三类复合组中，证明唯有补肾药能提高HPAT轴CRF>mRNA表达量与HPAT轴功能，说明补肾的归结作用是直接作用于下丘脑，与受抑制的CRF>mRNA表达水平在一定程度上得以恢复，从而调节了 HPAT轴的受抑制状态，对药物验证的角度可以更具体地说肾阳虚证的主要调节点定位在下丘脑。

参考文献
1. 《中医学杂志》第17卷第1期 1997年
2. 《中医学杂志》第17卷第1期 1997年
3. 《中医学杂志》第17卷第1期 1997年
4. 《中医学杂志》第17卷第1期 1997年
5. 《中医学杂志》第17卷第1期 1997年