·实验研究·

脑溢安对脑出血大鼠脑内碱性成纤维生长因子 mRNA 和肿瘤坏死因子蛋白表达的影响 *

张化彪¹△ 黎杏群¹ 张铭湘²

内容提要 目的 探讨脑溢安颗粒 简称脑溢安 对脑出血大鼠脑内碱性成纤维生长因子(bFGF)mRNA 和肿瘤坏死因子(TNF)蛋白表达的影响。方法:用 型型胶原酶诱导大鼠脑出血模型 ,进行行为学计分、Northern blot、Western blot 及吸光度扫描测定相关指标。结果:模型组的行为学计分在术后 24h 开始降低 ,7d 时明显降低(P < 0.05) ,脑溢安组 3d 即有明显的降低(P < 0.05) ;模型组、脑溢安组 bFGF mRNA 和 TNF 蛋白表达在 3d 时达到高峰 ,7d 时逐渐减弱 ,而脑溢安组在各个时间点的表达均强于模型组。结论:脑溢安治疗脑出血能增强 bFGF 的表达 ,抑制 TNF 蛋白表达 ,从而使行为学得到改善 ,这可能是脑溢安促进神经功能修复的主要机制之一。

关键词 脑溢安 脑出血 碱性成纤维生长因子 肿瘤坏死因子

Effect of Naoyi´an on Basic Fibroblastic Growth Factor mRNA Expression and Tumor Necrosis Factor Protein Expression in Brain of Rats following Intracerebral Hemorrhage ZHANG Hua-biao , LI Xing-qun , ZHANG Ming-xiang Institute of Integrated Traditional Chinese and Western Medicine , Xiangya Hospital , Zhongnan University , Changsha (410078)

Objective: To investigate the effect of Naoyi' an granule (NYAG) on basic fibroblastic growth factor (bFGF) mRNA expression and tumor necrosis factor (TNF) protein expression following intracerebral hemorrhage and provide the theoretical evidence of NYAG in treating intracerebral hemorrhage and promoting the rehabilitation of neural function. Methods: Model rats of intracerebral hemorrhage induced by infusion of collagenase \mathbb{W} into the caudate-putamen were used to determine the related parameters of behavior scores (BS), Northern blot , Western blot assay and optical density (OD) scanning in the model and the model treated with NYAG. And the data got from the two groups were compared. Results: BS in the model group began to lower 24 hrs after modeling and a significant decrease was shown 7 days later , while in the NYAG group , it decreased significantly three days after modeling , the difference between the two groups was significant (P < 0.05). Levels of bFGF mRNA expression and TNF protein expression increased after modeling , it reached the peak in three days and began to decrease gradually in seven days in both groups. However , the level in the NYAG group was higher than that in the model group in various times of the experimental process. Conclusion: NYAG could enhance the bFGF expression and suppress the TNF expression so as to improve the behavior deficit in treating intracerebral hemorrhage , which may be one of the main mechanisms of NYAG for promoting the rehabilitation of neural function.

Key words Naoyi'an granule, intracerebral hemorrhage, basic fibroblastic growth factor, tumor necrosis factor

在脑出血的脑损伤过程中,碱性成纤维生长因子 (basic fibroblast growth factor, bFGF)具有脑保护功能,可保护神经元,营养胶质细胞,促进新生血管形成;而肿瘤坏死因子(tumor necrosis factor, TNF)具有神经毒性作用,可促进炎症反应、血栓形成、收缩血管等,

^{*} 国家科技部 2000 年新药研究基金资助(No.96-901-05-225) 和国家中医药管理局基金资助(No.2000-J-B-03)

^{1.} 中南大学湘雅医院中西医结合研究所(长沙 410078);2. 中国 医学遗传学国家重点实验室

[△]现在华中科技大学同济医学院附属同济医院博士后流动站(武汉 430030) 万方数据

两者是一对抗损伤与损伤因子,且互相对立,贯穿在整个脑出血的病理生理过程中。国家三类中药新药脑溢安颗粒(简称胶溢安)是治疗急性期脑出血的新药,为了进一步探讨脑溢安的作用机制,本实验就脑溢安对脑出血过程中 bFGF 和 TNF 蛋白表达的影响进行研究, 现将结果报告如下。

材料与方法

- 1 药物与主要试剂 脑溢安颗粒剂:中南大学湘雅医院药剂科提供,由羚羊角、钩藤、三七、天竺黄、牡丹皮、地龙、牛膝、生地等 14 味中药组成,每克含生药 4g 稀释成 0.4g/ml 的溶液备用。 \mathbb{I} 型胶原酶、 α - 32 P-dATP、protease inhibitor cocktail 均为美国 Sigma 公司产品; Trizol 为美国 GIBCO 公司产品; bFGF 上、下游引物为上海瑞真生物公司合成; Advantage PCR 试剂 盒为美国 Clontech 公司产品; 连接体系为美国 Promega 公司产品; 兔抗大鼠 TNF 单克隆抗体为武汉博士德生物公司产品; 辣根过氧化物酶标记的山羊抗兔 IgG 为美国 CalBiochem 公司产品; Ecl+plus 显色剂为美国 Life Science 公司产品。
- 2 主要仪器 Stoel Ting TL-2 鼠脑立体定位仪、 Du-70 型分光光度计、PE-9600 PCR 仪、PE-337 循环 测序仪、LAB-Line 杂交炉、Beckman 液闪测定仪、 Appligene 电泳装置均产自美国。
- 3 动物及脑出血大鼠模型的制作 健康成年雄性 SD 大鼠,体重 250~300g,由中南大学湘雅医学院动物实验中心提供。用 10%水合氯醛(3.3ml/kg)腹腔麻醉后,将大鼠俯卧固定于鼠脑立体定位仪上,参照 Rosenberg 的方法⁽¹⁾,进行苍白球定位:前囟后1.4mm,矢状缝右侧3.2mm,剪开头皮进行颅骨窗形切开,暴露脑组织后,用微量注射器注入(深5.6mm)含0.4U Ⅷ型胶原酶的生理盐水2μl,2min注完,留针5min,拔针缝合皮肤,局部用络合碘消毒。
- 4 动物分组 78 只大鼠随机分为 4 组 ,正常组 (普通饲养 ,自由饮水 ,不做任何处理) 模型组(造模 ,蒸馏水 4ml/d 灌胃) 假手术组(颅内注射 2μl 生理盐水 ,普通饲养 蒸馏水 4ml/d 灌胃) 脑溢安组(造模 ,每天用脑溢安 1.6g/4ml 灌胃 ,相当于成人 70kg 体重的 3 倍) 除正常组外 ,每组再随机分为术后 12h、24h、3d、7d 4 个时间点 ,正常组共 6 只大鼠 ,其余每组每个时间点各 6 只大鼠 ,均为术后麻醉清醒后开始灌胃给药 ,每日上、下午各 1 次 ,每次 2ml。各组随机抽取大鼠于手术后 12h、24h、3d、7d 时间点进行神经症状计分后 ,分别做脑切再汽槽提 RNA 和匀浆蛋白 ,且分别使用不同

部位的大鼠脑组织。

- 5 行为学计分判定 采用爬行计分法²⁾,计分标准 6分:不能爬或滚落或趴于患侧 5分:患侧肢体拖行 4分:摔下或滑倒≥3次;3分:无滑落,但对侧后爪不触及木条侧面;2分:单侧跛行(肌力下降);1分:四肢支撑变宽,位于木条下;0分:正常,无明显缺陷。均于术后每日观察。
- 6 Northern blot 及 bFGF mRNA 的测定 从脑 组织中用 Trizol 抽提总 RNA ,测 OD 值 ,以 20μg 总 RNA 和变性液 12.5 μl 为样品 ,变性后电泳、转膜并烤 膜 置 - 76℃保存。设计引物:在 Gene bank 中查出 bFGF 的基因序列,在其阅读框内挑选约 420bp 的片 段,设计引物如下:引物 1:5'GC-ATGCCCGCACTGC-CGGAGGA3′,引物 2:5′GC-TCAGCTCTTAGCA-GAC3' 测 OD 值 并将浓度调为 $100\mu g/\mu l$ 。以抽提的 总 RNA 为模板 加入上下游引物 ,用 RT-PCR 法将总 RNA 逆转录成 cDNA ,然后以逆转录产物为模板做 PCR 扩增、次级扩增、Page 胶回收。 将纯化的 Page 胶 中 bFGF 的 DNA 连接到 T 载体上,并转化阳性克隆 的扩增、抽提质粒、测序。 探针的制备和纯化 :以抽提 的质粒为模板 ,用 α -32 P-dATP 标记探针 ,做 PCR 反 应 将探针加入 G-50 柱过滤 ,同时加入 TE ,蓝色的液 体即为分离纯化的探针,液闪仪测定的放射比活性为 5.5×10⁵。将尼龙膜预杂交、杂交 最后将杂交好的膜 放在显影夹内,放入 -76[°] 冰箱,曝光 $1\sim2$ 周,并冲 洗。采用 Eagle Eye II 凝胶成像分析系统对 Northern blot 的胶片进行扫描 ,吸光度越高 ,说明 bFGF mRNA 表达越强 反之亦然。
- 7 Western blot 及 TNF 的测定 Western blot 方法参照汪家政等⁽³⁾ 采用 Eagle Eye II 凝胶成像分析系统对 Western blot 的胶片进行扫描 ,吸光度越高 ,说明 TNF 蛋白的表达越强 ,反之亦然。
 - 8 统计学方法 采用方差分析。

结 果

- 1 各组大鼠的行为学观察结果 见图 1。正常组大鼠爬行计分为 0 分,假手术组各个时间点爬行计分均明显低于模型组(P < 0.05),且在 4 个时间点比较差异无显著性,而模型组在 12h 时计分达到最高,在 24h 时开始下降,在 7d 时显著低于 12h 时间点(P < 0.05),脑溢安组在各时间点均低于模型组,与本组 12h、24h 比较,3d、7d 时间点差异有显著性(P < 0.05)。
 - 2 各组大鼠不同时间 Northern blot 及 bFGF

mRNA 表达的吸光度值扫描结果 见图 2。12h:正常组、模型组、假手术组三者之间差异无显著性,脑溢安组与模型组、正常组比较差异有显著性(P < 0.05); 24h 模型组和正常组比较差异有显著性(P < 0.05), 脑溢安组维持着 12h 时间点的结果;3d:脑溢安组、模型组、假手术组的光密度值与正常组、同组 12h 时间点比较差异均有显著性(P < 0.05),而且在这一时间点,3组的 bFGF mRNA 表达都达到了高峰;在7d 时光密度值逐渐减弱,但模型组与正常组比较差异仍有显著性,脑溢安组和模型组比较差异亦有显著性(P < 0.05)。

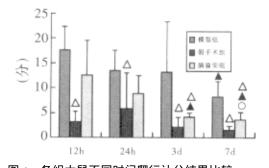


图 1 各组大鼠不同时间爬行计分结果比较 注 与模型组同期比较 ♠P<0.05 ;与本组 12h 比较 ♠P<0.05 ;与本组 24h 比较 ♠P<0.05

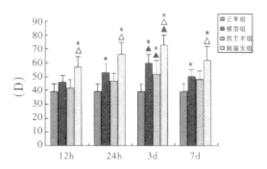


图 2 各组大鼠不同时间 bFGF mRNA 表达的吸光度值比较

注:与正常组同期比较,* P<0.05;与模型组同期比较, $^{\triangle}P<0.05$;与本组 12h 比较, $^{\triangle}P<0.05$ 与本组 24h 比较, $^{\bigcirc}P<0.05$

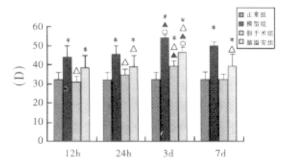


图 3 各组大鼠不同时间 TNF 蛋白表达的吸光度值比较注:与正常组同期比较,* P < 0.05;与模型组同期比较, $^{\circ}P < 0.05$;与本组了工程较 $^{\bullet}P < 0.05$;与本组 24h 比较 $^{\circ}P < 0.05$

3 各组大鼠不同时间 Western blot 及 TNF 蛋白表达的吸光度值扫描结果 见图 3。在 12h 和 24h 时模型组 TNF 蛋白的表达与正常组、假手术组比较差异有显著性(P < 0.05),脑溢安组在 12h、24h 时与正常组比较差异有显著性外,且显著低于模型组(P < 0.05),在 3d 时脑溢安组、模型组与同组 12h、24h 时表达差异均有显著性(P < 0.05),在这一时间点脑溢安组、模型组、假手术组 TNF 蛋白的表达的吸光度值达到高峰,在 7d 时模型组与正常组、同组 12h 时比较差异有显著性(P < 0.05),脑溢安组与正常组、模型组比较差异有显著性(P < 0.05),他此时 TNF 蛋白的表达渐弱。

讨 论

bFGF是一种具有多种生物活性的神经营养因 子,在脑缺血损伤中 bFGF 通过调节细胞内外 Ca2+的 浓度 稳定和提高线粒体功能来减少神经元损伤。将 分泌 bFGF 的细胞包被以后移植入大脑中动脉梗塞 (MACO)的大鼠脑中,发现梗塞面积比正常组减少大 约 30% 提示 bFGF 在脑缺血性损伤中具有脑保护作 用(4)。通过对嗜铬细胞瘤细胞的研究,发现 bFGF诱 导了细胞间信号转导途径 即上调分子的反应进程 河 使早期的 Ras 和全程的 PI 3 - 激酶上调,这可能是 bFGF 保护神经细胞存活和增生的机制(5)。在缺血再 灌注损伤中 血管生成因子的表达成为血管重塑的基 础 JaffGF 在促进新生血管形成的同时 增加了局部的 脑血流⁽⁶⁾。本实验模型组在术后 12h 时表达明显强于 正常组和假手术组 ,24h 时开始增强 ,3d 时达到高峰 , 7d 时渐渐减弱,但仍然显著强于正常组,说明 bFGF mRNA 在脑出血损伤后 12~24h 表达上调 ,而且至少 可持续 1 周以上:脑溢安组在 4 个不同时间点 bFGF mRNA 的表达均较模型组明显提高 ,3d 时达到高峰, 7d 时表达逐渐减弱 ,说明脑溢安能促进 bFGF 的表 达 从而实现神经修复作用。

TNF 是一种重要的免疫调节和致炎因子,是激活细胞因子网络的启动因子,在脑缺血损伤过程中是最重要的神经毒物质,可促进炎症反应和血栓形成,收缩血管,它的致炎作用涉及了iNOS,对细胞造成巨大的损伤⁷⁾。在中风后 30min 应用 TNF 的拮抗剂后,可以减少梗塞面积和死亡率,此时动物的运动功能和假手术组比较无明显损害,说明 TNF 参与了主要的缺血和继发的炎症损害⁸⁾。在胶原酶诱导脑出血的大鼠研究中发现,在脑出血 24h 后 TNF mRNA 和蛋白的表达明显强于假手术组⁽⁹⁾,在脑出血的发病及病程进展中

也发挥重要作用。从本实验可以看出,脑出血模型组 的 TNF 蛋白表达水平在 4 个不同的时间点均显著高 于正常组 3d 时表达到高峰 表明 TNF 参与了脑出血 的损伤过程。这一实验结果与脑组织出血后损伤、水 肿及炎症反应最严重的时期相吻合,进一步说明了 TNF在影响脑出血的病理生理过程中占重要地位。 24h 时脑溢安组的 TNF 蛋白表达与模型组比较降低 明显,并持续到3d时,但由于这一时间点是脑出血最 严重的时期,其表达水平仍显著高于 12h 及 24h 时 7d 时脑溢安组的 TNF 蛋白表达水平不但显著低于模型 组 ,而且和同组的 12h、24h 时比较差异无显著性 ,说明 脑溢安在这一时间已发挥了其最大疗效 将 TNF 表达 水平降到了发病 12h 时的最低水平。行为学计分显 示 脑溢安组从 3d 时起 计分已显著低于模型组 说明 在脑溢安的作用下,神经功能障碍的恢复时间已提前 到了3d 时。这与3d 时脑溢安显著增强 bFGF 的表 达 抑制 TNF 蛋白的表达相一致 ,两者在时相上相吻 合。

脑出血属于中医学中风范畴 為性期以风、火、痰、瘀、邪实为主。"风善行而数变"、"火性上炎,冲激上逆"这种"风火相煽"交织在一起,共同形成了脑出血的病理机制。脑溢安正是根据以上病机而专设的,具有熄风、泻火、行血、化痰之功效,方中钩藤平肝熄风,牡丹皮凉血泻火,地龙行血,天竺黄化痰等。本研究显示,脑溢安可增强 bFGF 的表达,抑制 TNF 蛋白的表达,促进神经修复,抑制炎症反应,对急性出血性中风风火相煽、气血上逆、痰瘀互阻的病机,具有独特的熄风、泻火、行血、化痰作用,从而发挥保护神明之府的脑保护作用。

参考文献

- Rosenberg GA, Sheila MB, Mary W, et al. Collagenase-induced intracerebral hemorrhage in rats. Stroke 1990;21: 801—807.
- Brailowsky S , Knight RT , Blook K , et al. Y-Aminobutyric acidinduced potentiation of cortical hemiplegia. Brain Res 1986;362: 322—330.
- 3. 汪家政,范 明主编. 蛋白质技术手册. 北京:科学出版社, 2000:25 200.
- 4. Fujiwara K , Date I , Shingo T , et al. Neurotrophic factor-secreting cell grafting for cerebral ischemia: preliminary report. Cell Transplant 2001;10(4—5):419—422.
- Kawamata T , Yamaguchi T , Shin-ya K , et al. Time courses of increased expression of signaling transduction molecules induced by basic fibroblast growth factor in PC12 cells. Neurol Res 2001 23(4):327—330.
- 6. Lin TN, Nian GM, Chen SF, et al. Induction of Tie-1 and Tie-2 receptor protein expression after cerebral ischemia-reperfusion. J Cereb Blood Flow Metab 2001 21(6):690—701.
- Hurtado O, Cardenas A, Lizasoain I, et al. Up-regulation of TNF-alpha convertase (TACE/ADAM17) after oxygen-glucose deprivation in rat forebrain slices. Neuropharmacology 2001 #0 (8):1094—1102.
- 8. Martin VA, Hahne M, Kleber S, et al. Therapeutic neutralization of CD95-ligand and TNF attenuates brain damage in stroke. Cell Death Differ 2001 & 7):679—686.
- Mayne M, Ni W, Yan HJ, et al. Antisense oligodeoxynucleotide inhibition of tumor necrosis factor-alpha expression is neuroprotective after intracerebral hemorrhage. Stroke 2001;
 3X 1):240—248.

(收稿 2001-12-20 修回 2002-04-01)

(上接514页)

- 6. Baumann B, Bornschlegl C, Krell D, et al. Changes in CSF spaces differ in endogenous and neurotic depression. A planimetric CT scan study. J Affect Disord 1997;45(3):179—188.
- 7. 姚芳传. 情感性精神障碍. 长沙 湖南科学技术出版社,1998:237.
- Alterations in the levels of monoamines in discrete brain regions of clomipramine-induced animal model of endogenous depression. Neurochem Res 1999 24(3):345—349.
- 9. 罗和春 周东丰 贾云奎 等, 电针治疗抑郁症临床观察与实

验研究.北京医科大学学报 1987;19(1):45-47.

- 10. 金光亮,周东丰,苏 晶. 电针对慢性应激抑郁模型大鼠脑单胺类神经递质的影响. 中华精神科杂志 1999;32(4): 20—21.
- 11. 韩 毳, 李晓泓, 李学武, 等. 电针"百会"、"三阴交"穴对慢性应激抑郁模型大鼠 HPA 轴的影响. 北京中医药大学学报 2001 24(3):74—75.
- 12. 韩 毳 ,李学武 ,李晓泓 ,等. 电针对慢性应激抑郁模型大鼠 BDNF 的影响. 中国中医基础医学杂志 2001 ,7(7):55—57. (收稿 2001-09-25 修回 2002-03-27)