Skip to main content

Advertisement

Log in

Yishen Jiangzhuo Granules (益肾降浊冲剂) affect tubulointerstitial fibrosis via a mitochondrion-mediated apoptotic pathway

  • Original Article
  • Published:
Chinese Journal of Integrative Medicine Aims and scope Submit manuscript

Abstract

Objective

To investigate the effect of Yishen Jiangzhuo Granules (益肾降浊冲剂, YSJZG) on mitochondrial injury and regeneration and renal tubular epithelial cell apoptosis in chronic renal failure (CRF) rats and explore its mechanism from molecular pathology, gene, protein levels, and relative pathway.

Methods

The CRF rat model was established using 5/6 nephrectomy. Sixty rats were randomly divided into six groups: sham-operation group, model (CRF) group, Niaoduqing Granules (尿毒清颗粒)-treated group [5 g/(kg.day)], low-, moderate-, and high-dose [L-YSJZG, M-YSJZG, H-YSJZG at 3, 6, and 9 g/(kg day)] YSJZG-treated group (n=10 each). The levels of serum creatinine (Scr), blood urea nitrogen (BUN), and 24-h urine protein were assessed after 10 weeks of treatment. The tubulointerstitial injury and collagen deposition were evaluated using periodic acid-schiff stain and Masson staining. Renal tubular epithelial cell apoptosis was assessed using the terminal deoxynucleotidyl transferase dUTP nick end labeling assay, mitochondrial injury was observed using an electron microscope, and superoxide dismutase (SOD), glutathione (GSH) and malondialdehyde (MDA) levels were assessed using chromometry. Transforming growth factor-β1 (TGF-β1) expression was assessed using immunohistochemistry. The expressions of Bax, Bcl-2, peroxisome proliferator-activated receptor γ coactivator- 1α (PGC-1α), mitochondrial transcription factor A (Tfam), mitogen-activated protein kinases (MAPK) phosphorylation were evaluated by Western blot.

Results

YSJZG decreased the 24-h urine protein, BUN, Scr, remnant kidney weight-to-body weight ratio, renal tubular injury, deposition of collagen, and the apoptosis of renal tubular epithelial cells in a dose-dependent manner. YSJZG dose-dependently restored the number and structure of mitochondria and the expression of Tfam and PCG-1α, up-regulated the expression of Bcl-2, and inhibited the expression of Bax. YSJZG also dose-dependently inhibited TGF-β1 expression, increased SOD and GSH activity, decreased the MDA level, and inhibited p38MAPK and pERK1/2 phosphorylation (all P<0.01).

Conclusion

YSJZG improved the renal function in rats with CRF and inhibited the progression of tubulointerstitial fibrosis by dose-dependently alleviating mitochondrial injury, restoring the expression of Tfam and PCG-1α, and inhibiting renal tubular epithelial cell apoptosis through inhibiting activation of reactive oxygen species-MAPK signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sharma K, Cook A, Smith M, Valancius C, Inscho EW. TGF-β impairs renal autoregulation via generation of ROS. Am J Physiol Renal 2005;288: F1069–F1077.

    Article  CAS  Google Scholar 

  2. Sun L, Xiao L, Nie J, Liu FY, Ling GH, Zhu XJ, et al. p66Shc mediates high-glucose and angiotensin II-induced oxidative stress renal tubular injury via mitochondrial-dependent apoptotic pathway. Am J Physiol Renal 2010;299: F1014–F1025.

    Article  CAS  Google Scholar 

  3. Funk JA, Odejinmi S, Schnellmann RG. SRT1720 induces mitochondrial biogenesis and rescues mitochondrial function after oxidant injury in renal proximal tubule cells. J Pharmacol Exp Ther 2010;333:593–601.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Martin MM, Buckenberger JA, Jiang J, Malana GE, Knoell DL, Feldman DS, et al. TGF-β1 stimulates human AT1 receptor expression in lung fibroblasts by cross talk between the Smad, p38 MAPK, JNK, and PI3K signaling pathways. Am J Physiol Lung-C 2007;293:L790–L799.

    Article  CAS  Google Scholar 

  5. Ventura-Clapier R, Garnier A, Veksler V. Transcriptional control of mitochondrial biogenesis: the central role of PGC-1a. Cardiovasc Res 2008;79:208–217.

    Article  CAS  PubMed  Google Scholar 

  6. Xu YF, Ruan SW, Zhang Z. Protective effect and mechanism of Yishenjiangzhuo Granules on renal glomerulosclerosis. China J Tradit Chin Med Pharm (Chin) 2011;26:2844–2848.

    CAS  Google Scholar 

  7. Kim K J, Moradi H, Yuan J, Norris K, Vaziri ND. Renal mass reduction results in accumulation of lipids and dysregulation of lipid regulatory proteins in the remnant kidney. Am J Physiol Renal Physiol 2009;296:F1297–F1306.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Xu YF, Ruan SW, Wan JX, Zhang Z. Effect of Yishenjiangzhuo Granules on accumulation of lipids and tubulointerstitial injury in remnant kidney of 5/6 nephrectomy rats. Chin J Integr Trad West Nephrol (Chin) 2011;12:852–855.

    Google Scholar 

  9. Xu Y, Ruan S, Xie H, Lin JM. Role of LOX-1 in Ang II-induced oxidative functional damage in renal tubular epithelial cells. Int J Mol Med 2010;26: 679–690.

    CAS  PubMed  Google Scholar 

  10. Zeisberg M, Hanai J, Sugimoto H, Mammoto T, Charytan D, Strutz F, et al. BMP-7 counteracts TGF-beta1-induced epithelial to mesenchymal transition and reverses chronic renal injury. Nat Med 2003;9:964–968.

    Article  CAS  PubMed  Google Scholar 

  11. Rouschop KMA, Claessen N, Pals ST, Weening JJ, Florquin S. CD44 disruption prevents degeneration of the capillary network in obstructive nephropathy via reduction of TGF-β1-induced apoptosis. J Am Soc Nephrol 2006;17:746–753.

    Article  CAS  PubMed  Google Scholar 

  12. Doughan AK, Harrison DG, Dikalov SI. Molecular mechanisms of angiotensin II-mediated mitochondrial dysfunction linking mitochondrial oxidative damage and vascular endothelial dysfunction. Circ Res 2008; 102:488–496.

    Article  CAS  PubMed  Google Scholar 

  13. Rego AC, Oliveira CR. Mitochondrial dysfunction and reactive oxygen species in excitotoxicity and apoptosis: implications for the pathogenesis of neurodegenerative diseases. Neurochem Res 2003;28:1563–1574.

    Article  CAS  PubMed  Google Scholar 

  14. Rasbach KA, Schnellmann RG. Signaling of mitochondrial biogenesis following oxidant injury. J Biol Chem 2007;282:2355–2362.

    Article  CAS  PubMed  Google Scholar 

  15. Park CB, Larsson NG. Mitochondrial DNA mutations in disease and aging. J Cell Biol 2011;193:809–818.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Arany Z, He H, Lin J, Hoyer K, Handschin C, Toka O, et al. Transcriptional coactivator PGC-1 alpha controls the energy state and contractile function of cardiac muscle. Cell Metab 2005;1:259–271.

    Article  CAS  PubMed  Google Scholar 

  17. Adhihetty PJ, Taivassalo T, Haller RG, Walkinshaw DR, Hood DA. The effect of training on the expression of mitochondrial biogenesis-and apoptosis-related proteins in skeletal muscle of patients with mtDNA defects. Am J Physiol Endocrinol Metab 2007;293:E672–E680.

    Article  CAS  PubMed  Google Scholar 

  18. Ryan MT, Hoogenraad NJ. Mitochondrial-nuclear communications. Annu Rev Biochem 2007;76:701–722.

    Article  CAS  PubMed  Google Scholar 

  19. Arany I, Megyesi JK, Kaneto H, Tanaka S, Safirstein RL. Activation of ERK or inhibition of JNK ameliorates H(2)O(2) cytotoxicity in mouse renal proximal tubule cells. Kidney Int 2004;65:1231–1239.

    Article  CAS  PubMed  Google Scholar 

  20. Adhihetty PJ, Uguccioni G, Leick L, Hidalgo J, Pilegaard H, Hood DA. The role of PGC-1α on mitochondrial function and apoptotic susceptibility in muscle. Am J Physiol Cell Physiol 2009;297:C217–C225.

    Article  CAS  PubMed  Google Scholar 

  21. Valle I, Alvarez-Barriento A, Arza E, Lamas ST, Monsalve M. PGC-1α regulates the mitochondrial antioxidant defense system in vascular endothelial cells. Cardiovasc Res 2005;66:562–573.

    Article  CAS  PubMed  Google Scholar 

  22. Hu C, Dandapat A, Sun L, Khan JA, Liu Y, Hermonat PL, et al. Regulation of TGFbeta1-mediated collagen formation by LOX-1: studies based on forced overexpression of TGFbeta1 in wild-type and lox-1 knock-out mouse cardiac fibroblasts. J Biol Chem 2008;283:10226–10231.

    Article  CAS  PubMed  Google Scholar 

  23. Rhyu DY, Yang Y, Ha H, Lee GT, Song JS, Uh ST, et al. Role of reactive oxygen species in TGF-beta1-induced mitogen-activated protein kinase activation and epithelialmesenchymal transition in renal tubular epithelial cells. J Am Soc Nephrol 2005;16:667–675.

    Article  CAS  PubMed  Google Scholar 

  24. Lee EA, Seo JY, Jiang Z, Yu MR, Kwon MK, Ha H, et al. Reactive oxygen species mediate high glucose-induced plasminogen activator inhibitor-1 up-regulation in mesangial cells and in diabetic kidney. Kidney Int 2005;67:1762–1771.

    Article  CAS  PubMed  Google Scholar 

  25. Xu YF, Yang SY, Huang JY, Ruan SW, Zhang Z, Lin JM. TGF-β1 induced autophagy and promoted apoptosis in renal tubular epithelial cells. Int J Mol Med 2012;29:781–790.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan-fang Xu  (许艳芳).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Yf., Ruan, Sw., Lin, Jm. et al. Yishen Jiangzhuo Granules (益肾降浊冲剂) affect tubulointerstitial fibrosis via a mitochondrion-mediated apoptotic pathway. Chin. J. Integr. Med. 21, 928–937 (2015). https://doi.org/10.1007/s11655-015-2078-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11655-015-2078-5

Keywords

Navigation