Skip to main content

Advertisement

Log in

Integration of chinese medicine with western medicine could lead to future medicine: molecular module medicine

  • Feature Article
  • Published:
Chinese Journal of Integrative Medicine Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The development of an effective classification method for human health conditions is essential for precise diagnosis and delivery of tailored therapy to individuals. Contemporary classification of disease systems has properties that limit its information content and usability. Chinese medicine pattern classification has been incorporated with disease classification, and this integrated classification method became more precise because of the increased understanding of the molecular mechanisms. However, we are still facing the complexity of diseases and patterns in the classification of health conditions. With continuing advances in omics methodologies and instrumentation, we are proposing a new classification approach: molecular module classification, which is applying molecular modules to classifying human health status. The initiative would be precisely defining the health status, providing accurate diagnoses, optimizing the therapeutics and improving new drug discovery strategy. Therefore, there would be no current disease diagnosis, no disease pattern classification, and in the future, a new medicine based on this classification, molecular module medicine, could redefine health statuses and reshape the clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lu AP, Chen KJ. Integrative medicine in clinical practice: from pattern differentiation in traditional Chinese medicine to disease treatment. Chin J Integr Med 2009;15:152.

    Article  PubMed  Google Scholar 

  2. Robinson PN. Classification and coding of rare diseases: overview of where we stand, rationale, why it matters and what it can change. Orphanet J Rare Dis 2012;7(Suppl 2):A10.

    Article  PubMed Central  Google Scholar 

  3. Menche J, Sharma A, Kitsak M, Ghiassian SD, Vidal M, Loscalzo J. Uncovering disease-disease relationships through the incomplete interactome. Science 2015;347:1257601.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Lee E, Chuang HY, Kim JW, Ideker T, Lee D. Inferring pathway activity toward precise disease classification. PLoS Comput Biol 2008;4:e1000217.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ferreira AS, Lopes AJ. Chinese medicine pattern differentiation and its implications for clinical practice. Chin J Integr Med 2011;17:818–823.

    Article  PubMed  Google Scholar 

  6. Barabási AL, Gulbahce N, Loscalzo J. Network medicine: a network-based approach to human disease. Nat Rev Genet 2011;12:56–68.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Wagner GP, Pavlicev M, Cheverud JM. The road to modularity. Nat Rev Genet 2007;8:921–931.

    Article  CAS  PubMed  Google Scholar 

  8. Wu JM, Montgomery E. Classification and pathology. Surgic Clin North Am 2008;88:483–520.

    Article  Google Scholar 

  9. Csermely P, Agoston V, Pongor S. The effi ciency of multitarget drugs: the network approach might help drug design. Trends Pharmacol Sci 2005;26:178–182.

    Article  CAS  PubMed  Google Scholar 

  10. Hopkins AL. Network pharmacology: the next paradigm in drug discovery. Nat Chem Biol 2008;4:682–690.

    Article  CAS  PubMed  Google Scholar 

  11. Leape LL. Error in medicine. JAMA 1994;272:1851–1857.

    Article  CAS  PubMed  Google Scholar 

  12. Gawande A, ed. Complications: a surgeon's notes on an imperfect science. London: Profi le Books;2010:288.

  13. Megnien JL, Simon A, Gariepy J, Denarie N, Cocaul M, Linhart A, et al. Preclinical changes of extracoronary arterial structures as indicators of coronary atherosclerosis in men. J Hypertens 1998;16:157–163.

    Article  CAS  PubMed  Google Scholar 

  14. Fried LP, Young Y, Rubin G, Bandeen-Roche K; WHAS II Collaborative Research Group. Self-reported preclinical disability identifies older women with early declines in performance and early disease. J Clin Epidemiol 2001;54:889–901.

    Article  CAS  PubMed  Google Scholar 

  15. Petrie EC, Cross DJ, Galasko D, Schellenberg GD, Raskind MA, Peskind ER, et al. Preclinical evidence of Alzheimer changes: convergent cerebrospinal fluid biomarker and fluorodeoxyglucose positron emission tomography fi ndings. Arch Neurol 2009;66:632–637.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Hyman BT, Phelps CH, Beach TG, Bigio EH, Cairns NJ, Carrillo MC, et al. National Institute on Aging-Alzheimer's Association guidelines for the neuropathologic assessment of Alzheimer's disease. Alzheimers Dement 2012;8:1–13.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Global Burden of Disease Study 2013 Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 2015;386:743–800.

    Article  PubMed Central  Google Scholar 

  18. Indrayan A, ed. Medical biostatistics. Boca Raton: CRC Press; 2012:1008.

  19. Risch N, Merikangas K. The future of genetic studies of complex human diseases. Science 1996;273:1516–1517.

    Article  CAS  PubMed  Google Scholar 

  20. Barnett K, Mercer SW, Norbury M, Watt G, Wyke S, Guthrie B. Epidemiology of multimorbidity and implications for health care, research, and medical education: a crosssectional study. Lancet 2012;380:37–43.

    Article  PubMed  Google Scholar 

  21. Benjamin RM. Multiple chronic conditions: a public health challenge. Public Health Rep 2010;125:626–627.

    PubMed  PubMed Central  Google Scholar 

  22. Fortin M, Bravo G, Hudon C, Vanasse A, Lapointe L. Prevalence of multimorbidity among adults seen in family practice. Ann Fam Med 2005;3:223–228.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Valderas JM, Starfi eld B, Sibbald B, Salisbury C, Roland M. Defi ning comorbidity: implications for understanding health and health services. Ann Fam Med 2009;7:357–363.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Starfield B. Threads and yarns: weaving the tapestry of comorbidity. Ann Fam Med 2006;4:101–103.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Fortin M, Soubhi H, Hudon C, Bayliss EA, van den Akker M. Multimorbidity's many challenges. BMJ 2007;334:1016–1017.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Quan H, Sundararajan V, Halfon P, Fong A, Burnand B, Luthi JC, et al. Coding algorithms for defi ning comorbidities in ICD-9-CM and ICD-10 administrative data. Med Care 2005;43:1130–1139.

    Article  PubMed  Google Scholar 

  27. Piccirillo JF, Feinstein AR. Clinical symptoms and comorbidity: signifi cance for the prognostic classification of cancer. Cancer 1996;77:834–842.

    Article  CAS  PubMed  Google Scholar 

  28. Ritchie C. Health care quality and multimorbidity: the jury is still out. Med Care 2007;45:477–479.

    Article  PubMed  Google Scholar 

  29. Bentsen BG. International classification of primary care. Scand J Prim Health Care 1986;4:43–50.

    Article  CAS  PubMed  Google Scholar 

  30. van den Akker M, Buntinx F, Knottnerus JA. Comorbidity or multimorbidity: what's in a name? A review of literature. Eur J Gener Pract 1996;2:65–70.

    Article  Google Scholar 

  31. Huang W, Wang P, Liu Z, Zhang L. Identifying disease associations via genome-wide association studies. BMC Bioinformatics 2009;10(Suppl 1):S68.

    Article  PubMed  PubMed Central  Google Scholar 

  32. del Sol A, Balling R, Hood L, Galas D. Diseases as network perturbations. Curr Opin Biotechnol 2010;21: 566–571.

    Article  CAS  PubMed  Google Scholar 

  33. Ashley CE, Carnes EC, Phillips GK, Padilla D, Durfee PN, Brown PA, et al. The targeted delivery of multicomponent cargos to cancer cells by nanoporous particle-supported lipid bilayers. Nat Mater 2011;10:389–397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wald DS, Law M, Morris JK, Bestwick JP, Wald NJ. Combination therapy versus monotherapy in reducing blood pressure: meta-analysis on 11,000 participants from 42 trials. Am J Med 2009;122:290–300.

    Article  PubMed  Google Scholar 

  35. Hammer SM, Katzenstein DA, Hughes MD, Gundacker H, Schooley RT, Haubrich RH, et al. A trial comparing nucleoside monotherapy with combination therapy in HIVinfected adults with CD4 cell counts from 200 to 500 per cubic millimeter. N Engl J Med 1996;335:1081–1090.

    Article  CAS  PubMed  Google Scholar 

  36. Clark RE, Bartels SJ, Mellman TA, Peacock WJ. Recent trends in antipsychotic combination therapy of schizophrenia and schizoaffective disorders: implications for state mental health policy. Schizophr Bull 2002;28:75–84.

    Article  PubMed  Google Scholar 

  37. Piot P, Bartos M, Ghys PD, Walker N, Schwartlander B. The global impact of HIV/AIDS. Nature 2001;410:968–973.

    Article  CAS  PubMed  Google Scholar 

  38. Petricoin EF, Bichsel VE, Calvert VS, Espina V, Winters M, Young L, et al. Mapping molecular networks using proteomics: a vision for patient-tailored combination therapy. J Clin Oncol 2005;23:3614–3621.

    Article  CAS  PubMed  Google Scholar 

  39. Weinstein IB, Joe AK. Mechanisms of disease: oncogene addiction—a rationale for molecular targeting in cancer therapy. Nature Clin Pract Oncol 2006;3:448–457.

    Article  CAS  Google Scholar 

  40. van der Greef J, McBurney RN. Rescuing drug discovery: in vivo systems pathology and systems pharmacology. Nat Rev Drug Discov 2005;4:961–967.

    Article  CAS  PubMed  Google Scholar 

  41. Overington JP, Al-Lazikani B, Hopkins AL. How many drug targets are there? Nat Rev Drug Discov 2006;5:993–996.

    Article  CAS  PubMed  Google Scholar 

  42. Butcher EC, Berg EL, Kunkel EJ. Systems biology in drug discovery. Nat Biotechnol 2004; 22:1253–1259.

    Article  CAS  PubMed  Google Scholar 

  43. Shak S. Overview of the trastuzumab (Herceptin) anti-HER2 monoclonal antibody clinical program in HER2-overexpressing metastatic breast cancer. Semin Oncol 1999;26(4 Suppl 12):71–77.

    CAS  PubMed  Google Scholar 

  44. Sliwkowski MX, Lofgren JA, Lewis GD, Hotaling TE, Fendly BM, Fox JA. Nonclinical studies addressing the mechanism of action of trastuzumab (Herceptin). Semin Oncol 1999;26(4 Suppl 12):60–70.

    CAS  PubMed  Google Scholar 

  45. Csermely P, Korcsmáros T, Kiss HJ, London G, Nussinov R. Structure and dynamics of molecular networks: a novel paradigm of drug discovery: a comprehensive review. Pharmacol Ther 2013;138:333–408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ko TWK, Stephenson SL, Bahkali AH, Hyde KD. From morphology to molecular biology: can we use sequence data to identify fungal endophytes? Fung Divers 2011;50:113–120.

    Article  Google Scholar 

  47. Birch S, Alraek T. Traditional East Asian medicine: how to understand and approach diagnostic fi ndings and patterns in a modern scientific framework? Chin J Integr Med 2014;20:336–340.

    Article  PubMed  Google Scholar 

  48. Niu X, Lu C, Xiao C, Ge N, Jiang M, Li L, et al. The crosstalk of pathways involved in immune response maybe the shared molecular basis of rheumatoid arthritis and type 2 diabetes. PLos One 2015;10:e0134990.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Niu X, Lu C, Xiao C, Zhang Z, Jiang M, He D, et al. The shared crosstalk of multiple pathways involved in the inflammation between rheumatoid arthritis and coronary artery disease based on a digital gene expression profi le. PLos One 2014;9:e113659.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Stelzl U, Worm U, Lalowski M, Haenig C, Brembeck FH, Goehler H, et al. A human protein-protein interaction network: a resource for annotating the proteome. Cell 2005;122:957–968.

    Article  CAS  PubMed  Google Scholar 

  51. Zanzoni A, Soler-López M, Aloy P. A network medicine approach to human disease. FEBS Lett 2009;583:1759–1765.

    Article  CAS  PubMed  Google Scholar 

  52. Jia J, Zhu F, Ma X, Cao Z, Li Y, Chen YZ. Mechanisms of drug combinations: interaction and network perspectives. Nat Rev Drug Discov 2009;8:111–128.

    Article  CAS  PubMed  Google Scholar 

  53. Yildirim MA, Goh KI, Cusick ME, Barabási AL, Vidal M. Drug-target network. Nat Biotechnol 2007;25:1119–1126.

    Article  CAS  PubMed  Google Scholar 

  54. Wagner GP, Pavlicev M, Cheverud JM. The road to modularity. Nat Rev Genet 2007;8:921–931.

    Article  CAS  PubMed  Google Scholar 

  55. Barabasi AL, Oltvai ZN. Network biology: understanding the cell's functional organization. Nat Rev Genet 2004;5:101–113.

    Article  CAS  PubMed  Google Scholar 

  56. Miller JA, Oldham MC, Geschwind DH. A systems level analysis of transcriptional changes in Alzheimer's disease and normal aging. J Neurosci 2008;28:1410–1420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Firestein GS. Evolving concepts of rheumatoid arthritis. Nature 2003;423:356–361.

    Article  CAS  PubMed  Google Scholar 

  58. Wermuth CG. Multitargeted drugs: the end of the 'onetarget-one-disease'philosophy? Drug Discov Today 2004;9:826–827.

    Article  PubMed  Google Scholar 

  59. Oprea TI, Bauman JE, Bologa CG, Buranda T, Chigaev A, Edwards BS, et al. Drug repurposing from an academic perspective. Drug Discov Today Ther Strateg 2012;8:61–69.

    Article  Google Scholar 

  60. Rothwell PM, Price JF, Fowkes FG, Zanchetti A, Roncaglioni MC, Tognoni G, et al. Short-term effects of daily aspirin on cancer incidence, mortality, and nonvascular death: analysis of the time course of risks and benefits in 51 randomised controlled trials. Lancet 2012;379:1602–1612.

    Article  CAS  PubMed  Google Scholar 

  61. Chong CR, Sullivan DJ. New uses for old drugs. Nature 2007;448:645–646.

    Article  CAS  PubMed  Google Scholar 

  62. Harris L, Downar E, Shaikh NA, Chen T. Antiarrhythmic potential of chloroquine: new use for an old drug. Can J Cardiol 1988;4:295–300.

    CAS  PubMed  Google Scholar 

  63. Ferrannini E, Cushman WC. Diabetes and hypertension: the bad companions. Lancet 2012;380:601–610.

    Article  PubMed  Google Scholar 

  64. Mannino DM, Thorn D, Swensen A, Holguin F. Prevalence and outcomes of diabetes, hypertension and cardiovascular disease in COPD. Eur Respir J 2008;32:962–969.

    Article  CAS  PubMed  Google Scholar 

  65. Pujol A, Mosca R, Farrés J, Aloy P. Unveiling the role of network and systems biology in drug discovery. Trends Pharmacol Sci 2010;31:115–123.

    Article  CAS  PubMed  Google Scholar 

  66. Finzi D, Hermankova M, Pierson T, Carruth LM, Buck C, Chaisson RE, et al. Identification of a reservoir for HIV-1 in patients on highly active antiretroviral therapy. Science 1997;278:1295–1300.

    Article  CAS  PubMed  Google Scholar 

  67. Flaherty KT, Infante JR, Daud A, Gonzalez R, Kefford RF, Sosman J, et al. Combined BRAF and MEK inhibition in melanoma with BRAF V600 mutations. N Engl J Med 2012;367:1694–1703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Rask-Andersen M, Almén MS, Schiöth HB. Trends in the exploitation of novel drug targets. Nat Rev Drug Discov 2011;10:579–590.

    Article  CAS  PubMed  Google Scholar 

  69. Zhao S, Li S. A co-module approach for elucidating drug–disease associations and revealing their molecular basis. Bioinformatics 2012;28:955–961.

    Article  CAS  PubMed  Google Scholar 

  70. Bunnage ME. Getting pharmaceutical R&D back on target. Nat Chem Biol 2011;7:335–339.

    Article  CAS  PubMed  Google Scholar 

  71. Russell C, Rahman A, Mohammed AR. Application of genomics, proteomics and metabolomics in drug discovery, development and clinic. Ther Deliv 2013;4:395–413.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ai-ping Lu  (吕爱平).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Zhang, G., Chen, Kj. et al. Integration of chinese medicine with western medicine could lead to future medicine: molecular module medicine. Chin. J. Integr. Med. 22, 243–250 (2016). https://doi.org/10.1007/s11655-016-2495-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11655-016-2495-0

Keywords

Navigation