Skip to main content
Log in

Effect of ligustrazine nanoparticles nano spray on transforming growth factor-β/Smad signal pathway of rat peritoneal mesothelial cells induced by tumor necrosis factor-α

  • Original Article
  • Published:
Chinese Journal of Integrative Medicine Aims and scope Submit manuscript

Abstract

Objective

To study the effect of ligustrazine nanoparticles nano spray (LNNS) on transforming growth factor β (TGF-β)/Smad signal protein of rat peritoneal mesothelial cells (RPMC) induced by tumor necrosis factor α (TNF-α), and the anti-adhesion mechanism of LNNS in the abdominal cavity.

Methods

The primary culture and subculture of rat peritoneal mesothelial cells (RPMC) was processed by trypsin digestion method in vitro. The third generation was identifified for experiment and divided into 5 groups: a blank group: RPMC without treatment; a control group: RPMC stimulated with TNF-α; RPMC treated by a low-dosage LNNS group (2.5 mg/L); RPMC treated by a medium-dosage LNNS group (5 mg/L); and RPMC treated by a high-dosage LNNS group (10 mg/L). Reverse transcription-polymerase chain reaction was applied to test the expression of fifibronectin, collagen I (COL-I), TGF-β mRNA, and Western blot method to test the Smad protein 7 expression of RPMC.

Results

Compared with the blank group, a signifificant elevation in fifibronectin (FN), COL-I and TGF-β mRNA expression of RPMC were observed in the control group (P<0.05). Compared with the control group, LNNS suppressed the expressions of FN, COL-I and TGF-β mRNA in a concentrationdependent manner (P<0.05). The expression of Smad7 protein of RPMC was down-regulated by TNF-α stimulation, and up-regulated with the increase of LNNS dose (P<0.05).

Conclusions

TNF-α may induce changes in RPMC’s viability, leading to peritoneal injury. LNNS could reverse the induction of fifibrosis related cytokine FN, COL-I and TGF-β, up-regulating the expression of Smad7 by TNF-α in RPMC, thus attenuate peritoneal injury by repairing mesothelial cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Parker MC, Wilson MS, van Goor H, Moran BJ, Jeekel J, Duron JJ, et al. Adhesions and colorectal surgery—call for action. Colorectal Dis 2007;9:66–72.

    Article  PubMed  Google Scholar 

  2. Cheong YC, Laird SM, Li TC, Shelton JB, Ledger WL, Cooke ID. Peritoneal healing and adhesion formation/ reformation. Hum Reprod Update 2001;7:556–566.

    Article  CAS  PubMed  Google Scholar 

  3. Kössi J, Salminen P, Rantala A, Laato M. Population-based study of the surgical workload and economic impact of bowel obstruction caused by postoperative adhesions. Br J Surg 2003;90:1441–1444.

    Article  PubMed  Google Scholar 

  4. Schnuriger B, Barmparas G, Branco BC, Lustenberger T, Inaba K, Demetriades D. Prevention of postoperative peritoneal adhesions: a review of the literature. Am J Surg 2011;201:111–121.

    Article  PubMed  Google Scholar 

  5. Brüggmann D, Tchartchian G, Wallwiener M, Münstedt K, Tinneberg HR, Hackethal A. Intra-abdominal adhesions: definition, origin, significance in surgical practice, and treatment options. Dtsch Arztebl Int 2010;107:769–775.

    PubMed  PubMed Central  Google Scholar 

  6. Ergul E, Korukluoglu B. Peritoneal adhesions: facing the enemy. Int J Surg 2008;6:253–260.

    Article  PubMed  Google Scholar 

  7. Liakakos T, Thomakos N, Fine PM, Dervenis C, Young RL. Peritoneal adhesions: etiology, pathophysiology, and clinical significance. Recent advances in prevention and management. Dig Surg 2001;18:260–273.

    CAS  PubMed  Google Scholar 

  8. Ward BC, Panitch A. Abdominal adhesions: current and novel therapies. J Surg Res 2011;165:91–111.

    Article  PubMed  Google Scholar 

  9. Ambler DR, Fletcher NM, Diamond MP, Saed GM. Effects of hypoxia on the expression of inflammatory markers IL-6 and TNF-a in human normal peritoneal and adhesion fibroblasts. Syst Biol Reprod Med 2012;58:324–329.

    Article  CAS  PubMed  Google Scholar 

  10. Corona R, Verguts J, Schonman R, Binda MM, Mailova K, Koninckx PR. Postoperative inflammation in the abdominal cavity increases adhesion formation in a laparoscopic mouse model. Fertil Steril 2011;95:1224–1228.

    Article  PubMed  Google Scholar 

  11. Pismensky SV, Kalzhanov ZR, Eliseeva MY, Kosmas IP, Mynbaev OA. Severe inflammatory reaction induced by peritoneal trauma is the key driving mechanism of postoperative adhesion formation. BMC Surg 2011;11:30.

    Article  PubMed  PubMed Central  Google Scholar 

  12. ten Broek RP, Wilbers J, van Goor H. Electrocautery causes more ischemic peritoneal tissue damage than ultrasonic dissection. Surg Endosc 2011;25:1827–1834.

    Article  PubMed  Google Scholar 

  13. Thompson J. Pathogenesis and prevention of adhesion formation. Dig Surg 1998;15:153–154.

    Article  CAS  PubMed  Google Scholar 

  14. Holmdahl L, Ivarsson ML. The role of cytokines, coagulation, and fibrinolysis in peritoneal tissue repair. Eur J Surg 1999;165:1012–1019.

    Article  CAS  PubMed  Google Scholar 

  15. Falk P, Ma C, Chegini N, Holmdahl L. Differential regulation of mesothelial cell fibrinolysis by transforming growth factor beta 1. Scand J Clin Lab Invest 2000;60:439–447.

    Article  CAS  PubMed  Google Scholar 

  16. Liu Y. Epithelial to mesenchymal transition in renal fibrogenesis: pathologic significance, molecular mechanism, and therapeutic intervention. J Am Soc Nephrol 2004;15:1–12.

    Article  CAS  PubMed  Google Scholar 

  17. Guo H, Leung JC, Cheung JS, Chan LY, Wu EX, Lai KN. Non-viral Smad7 gene delivery and attenuation of postoperative peritoneal adhesion in an experimental model. Br J Surg 2009;96:1323–1335.

    Article  CAS  PubMed  Google Scholar 

  18. Mao CQ, Zeng L, Lu TL, Wang XW, Li ZY, Su T. Effects of Ligustrazine nano spray on celiac adhesion related factors and fibrinolysis system in rats. Chin Pharmacol Bull 2012;28:118–123.

    CAS  Google Scholar 

  19. Li ZY, Mao CQ, Zeng L, Lu TL. Determination of entrapment efficiency of tetramethylpyrazine polylactic aci nanoparticles. J Nangjing Univ Tradit Chin Med (Chin) 2011;27:77–79.

    Article  CAS  Google Scholar 

  20. Zeng L, Mao CQ, Lu TL, Qian L, Li ZY. Su T. Preparation technology and quality assay of ligustrazine poly lactic acid nanoparticles. Chin Tradit Patent Med (Chin) 2013;35:261–263.

    CAS  Google Scholar 

  21. Zeng L, Mao CQ, Lu TL, Qian L, Li ZY, Su T. Culture and identification of peritoneal mesothelium cells in rats. J Nangjing Univ Tradit Chin Med (Chin) 2012;28:334–336.

    CAS  Google Scholar 

  22. Coccolini F, Ansaloni L, Manfredi R, Campanati L, Poiasina E, Bertoli P, et al. Peritoneal adhesion index (PAI): proposal of a score for the “ignored iceberg” of medicine and surgery. World J Emerg Surg 2013;8:6.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Verrecchia F, Mauviel A. Transforming growth factor-beta signaling through the Smad pathway: role in extracellular matrix gene expressionand regulation. J Invest Dermatol 2002;118:211–215.

    Article  CAS  PubMed  Google Scholar 

  24. Zhang SK, Cui NQ, Zhuo YZ, Li DH, Liu JH. Modified Xiaochaihu Decoction prevents the progreßsion of chronic pancreatitis in rats possibly by inhibitingtransforming growth factor-1/Sma-and mad-related proteins signaling pathway. Chin J Integr Med 2013;19:935–939..

    Article  PubMed  Google Scholar 

  25. Maciver AH, McCall M, James Shapiro AM. Intra-abdominal adhesions: cellular mechanisms and strategies for prevention. Int J Surg 2011;9:589–594.

    Article  PubMed  Google Scholar 

  26. Bai JR, Wu XZ. The mechanism and prevention of postoperative peritoneal adhesion. Chin J Surg Integr Tradit West Med (Chin) 2011;17:332–336.

    CAS  Google Scholar 

  27. Che XW, Zhang Y, Wang H, Wang W. Effect of ligustrazine injection on levels of interleukin-4 and interferon-gamma in patients with bronchial asthma. Chin J Integr Med 2008;14:217–220.

    Article  CAS  PubMed  Google Scholar 

  28. Mark C, Ester P, Anita R. Role of transforming growth factor-ß signaling in cancer. J Natl Cancer Inst 2000;92:1388–1402.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Zeng  (曾 莉).

Additional information

Supported by the National Natural Science Foundation of China (No. 81373843) and College Graduate Student Innovative Research Fund of Jiangsu Province, China (No. CXZZ13-0613) and Administration of Traditional Chinese Medicine Science and Technology Project of Jiangsu Province, China (No. LZ13006)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, S., Yang, L., Yue, Yz. et al. Effect of ligustrazine nanoparticles nano spray on transforming growth factor-β/Smad signal pathway of rat peritoneal mesothelial cells induced by tumor necrosis factor-α. Chin. J. Integr. Med. 22, 629–634 (2016). https://doi.org/10.1007/s11655-015-2180-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11655-015-2180-8

Keywords

Navigation