Skip to main content
Log in

Antioxidative effect of luteolin pretreatment on simulated ischemia/reperfusion injury in cardiomyocyte and perfused rat heart

  • Original Article
  • Published:
Chinese Journal of Integrative Medicine Aims and scope Submit manuscript

Abstract

Objective

To investigate the antioxidative effect and mechanism of luteolin on rat cardiomyocytes and isolated hearts followed by simulated ischemia/reperfusion (SI/R) injury.

Methods

The left ventricular cardiomyocytes and the isolated hearts from adult rats were subjected to SI/R injury. The experiment groups included control, SI/R, luteolin + SI/R (Lut + SI/R), vitamin E (Vit E) + SI/R, and LY294002 + luteolin + SI/R (LY + Lut + SI/R) groups. Cell viability, shortening amplitude, lactate dehydrogenase (LDH) release, superoxide dismutase (SOD) activity, the production of reactive oxygen species (ROS) and malondialdehyde (MDA), expression levels of Akt, phosphorylated Akt, NOX2 (gp91phox), NOX2 mRNA, mitogen-activated protein kinase (p38 MAPK) and phosphorylated p38MAPK were all measured after 3-h simulated ischemia and 2-h simulated reperfusion procedure in cardiomyocytes. Vit E was used as a standard control. The contractile function of isolated hearts was further observed after they were subjected to 30-min global ischemia and 120-min reperfusion.

Results

Pretreatment with 8-μmol/L luteolin substantially increased cell viability and shortening amplitude, while reducing evidence of oxidative stress-induced damage in the cells. In addition, the expression of NOX2, NOX2 mRNA and phosphorylation of p38MAPK were all downregulated. Furthermore, pretreatment with 40-μmol/L luteolin improved the recovery of myocardial contractile function following SI/R-induced injury, and luteolin markedly increased phosphorylation of Akt. However, all of the above effects were partially inhibited by the phosphatidylinositol 3-kinase (PI3K) inhibitor, LY294002.

Conclusions

Luteolin prevents SI/R-induced myocardial damage by reducing oxidative stress-induced injury in isolated rat hearts and cardiomyocytes, and the cardioprotection induced by luteolin was partially mediated by the PI3K/Akt pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dallas TX, ed. American Heart Association. The American Heart Association biostatistical fact sheets; 1997:1–29.

    Google Scholar 

  2. Kim JK, Pedram A, Razandi M, Levin ER. Estrogen prevents cardiomyocyte apoptosis through inhibition of reactive oxygen species and differential regulation of p38 kinase isoforms. J Biol Chem 2006;281:6760–6767.

    Article  CAS  PubMed  Google Scholar 

  3. Karyn L, ed. Antioxidants and Cardioprotection. Med Sci Sports Exerc 2007;1545–1553.

    Google Scholar 

  4. Mockridge JW, Marber MS, Heads RJ. Activation of Akt during simulated ischemia/reperfusion in cardiac myocytes. Biochem Biophys Res Commun 2000;270:947–952.

    Article  CAS  PubMed  Google Scholar 

  5. Fang F, Li DY, Pan HJ, Chen D, Qi LL, Zhang RQ, et al. Luteolin inhibits apoptosis and improves cardiomyocytes contractile function through PI3K/Akt pathway in simulated ischemia/reperfusion. Pharmacology 2011;88:149–158.

    Article  CAS  PubMed  Google Scholar 

  6. Saraste A, Pulkki K, Kallajoki M, Henriksen K, Parvinen M, Voipio-Pulkki LM. Apoptosis in human acute myocardial infarction. Circulation 1997;95:320–323.

    Article  CAS  PubMed  Google Scholar 

  7. Vanden Hoek TL, Qin Y, Wojcik K, Li CQ, Shao ZH, Anderson T, et al. Reperfusion, not simulated ischemia, initiates intrinsic apoptosis injury in chick cardiomyocytes. Am J Physiol 2003;284:H141–H150.

    Google Scholar 

  8. Lv XX, Yu XH, Wang HD, Yan YX, Wang YP, Lu DX, et al. Berberine inhibits norepinephrine-induced apoptosis in neonatal rat cardiomyocytes via inhibiting ROS-TNF-alpha-caspase signaling pathway. Chin J Integr Med 2012;19:424–431.

    Article  PubMed  Google Scholar 

  9. Zhao, ZQ. Oxidative stress-elicited myocardial apoptosis during reperfusion. Curr Opin Pharmacol 2004;4:159–165.

    Article  CAS  PubMed  Google Scholar 

  10. Sauer H, Wartenberg M, Hescheler J. Reactive oxygen species as intracellular messengers during cell growth and differentiation. Cell Physiol Biochem 2001;11:173–186.

    Article  CAS  PubMed  Google Scholar 

  11. Griendling KK, Sorescu D, Ushio-Fukai M. NAD(P)H oxidase: role in cardiovascular biology and disease. Circ Res 2000;86:494–501.

    Article  CAS  PubMed  Google Scholar 

  12. Anrather J, Racchumi G, Iadecola C. NF-kappaB regulates phagocytic NADPH oxidase by inducing the expression of gp91phox. J Biol Chem 2006;281:5657–5667.

    Article  CAS  PubMed  Google Scholar 

  13. Fu JH, Zheng YQ, LI P, Li XZ, Shang XH, Liu JX. Hawthorn leaves flavonoids decreases inflammation related to acute myocardial ischemia/reperfusion in anesthetized dogs. Chin J Integr Med 2013;19:582–588.

    Article  CAS  PubMed  Google Scholar 

  14. Li L, Henry GE, Seeram NP. Identification and bioactivities of resveratrol oligomers and flavonoids from Carex folliculata seeds. J Agr Food Chem 2009;57:7282–7287.

    Article  CAS  Google Scholar 

  15. Chang J, Hsu Y, Kuo P, Kuo Y, Chiang L, Lin C. Increase of Bax/Bcl-XL ratio and arrest of cell cycle by luteolin in immortalized human hepatoma cell line. Life Sci 2005;76:1883–1893.

    Article  CAS  PubMed  Google Scholar 

  16. Li YC, Hung CF, Yeh FT, Lin JP, Chung JG. Luteolininhibited arylamine N-acetyltransferase activity and DNA-2-aminofluorene adduct in human and mouse leukemia cells. Food Chem Toxicol 2001;39:641–647.

    Article  CAS  PubMed  Google Scholar 

  17. Yee SB, Lee JH, Chung HY, Im KS, Bae SJ, Choi JS, et al. Inhibitory effects of luteolin isolated from Ixeris sonchifolia Hance on the proliferation of HepG2 human hepatocellular carcinoma cells. Arch Pharm Res 2003;26:151–156.

    Article  CAS  PubMed  Google Scholar 

  18. Wu MJ, Weng CY, Ding HY, Wu PJ. Anti-inflammatory and antiviral effects of Glossogyne tenuifolia. Life Sci 2005;76:1135–1146.

    Article  CAS  PubMed  Google Scholar 

  19. Choi CW, Jung HA, Kang SS, Choi JS. Antioxidant constituents and a new triterpenoid glycoside from Flos lonicerae. Arch Pharm Res 2007;30:1–7.

    Article  CAS  PubMed  Google Scholar 

  20. Hao Y, Sun Y, Xu C, Jiang X, Sun H, Wu Q, et al. Improvement of contractile function in isolated cardiomyocytes from ischemia-reperfusion rats by ginkgolide B pretreatment. J Cardiovasc Pharmacol 2009;54:3–9.

    Article  CAS  PubMed  Google Scholar 

  21. Zhao Z, Sun H, Yan CD, Gu SL, Wu Q. Oestrogen changed cardiomyocyte contraction and b2-adrenoceptor expression in rat hearts subjected to ischemia reperfusion. Exp Physiol 2008;93:1034–1043.

    Article  PubMed  Google Scholar 

  22. Sun H, Zhou F, Wang Y, Zhang Y, Chang A, Chen Q. Effects of beta-adrenoceptorsoverexpression on cell survival are mediated by Bax/Bcl-2 pathway in rat cardiac myocytes. Pharmacology 2006;78:98–104.

    Article  CAS  PubMed  Google Scholar 

  23. Qi LL, Pan HJ, Li DY, Fang F, Chen D, Sun H. Luteolin improves contractile function and attenuates apoptosis following ischemia-reperfusion in adult rat cardiomyocytes. Eur J Pharmacol 2011;668:201–207.

    Article  CAS  PubMed  Google Scholar 

  24. Das A, Smolenski A, Lohmann SM, Kukreja RC. Cyclic GMP-dependent protein kinase Ialpha attenuates necrosis and apoptosis following ischemia/reoxygenation in adult cardiomyocyte. J BiolChem 2006;281:38644–38652.

    CAS  Google Scholar 

  25. Denizot F, Lang R. Rapid colorimetric assay for cell growth and survival. Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. J Immunol Methods 1986;89:271–277.

    Article  CAS  PubMed  Google Scholar 

  26. Xu C, Liu A, Sun H, Sun Y, Wang G, Gao L, et al. Beta2-adrenoceptor confers cardioprotection against hypoxia in isolated ventricular myocytes and the effects depend on estrogenic environment. J Recept Signal Transduct Res 2010;30:255–261.

    Article  CAS  PubMed  Google Scholar 

  27. Gong H, Adamson DL, Ranu HK, Koch WJ, Heubach JF, Ravens U, et al. The effect of Gi-protein inactivation on basal, and β1-and β2AR-stimulated contraction of myocytes from transgenic mice overexpressing the β2-adrenoceptor. Br J Pharmacol 2000;131:594–600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhou JJ, Pei JM, Wang GY, Wu S, Wang WP, Cho CH, et al. Inducible HSP70 mediates delayed cardioprotection via U-50488H pretreatment in rat ventricular myocytes. Am J Physiol Heart Circ Physiol 2001;28:H40–H47.

    Google Scholar 

  29. Liu D, He H, Li GL, Chen J, Yin D, Liao ZP, et al. Mechanisms of chloride in cardiomyocyte anoxiareoxygenation injury: the involvement of oxidative stress and NF-kappaB activation. Mol Cell Biochem 2011;355:201–209.

    Article  CAS  PubMed  Google Scholar 

  30. Bass DA, Parce JW, Dechatelet LR. Flow cytometric studies of oxidative product formation by neutrophils: a graded response to membrane stimulation. J Immunol 1983;130:1910–1917.

    CAS  PubMed  Google Scholar 

  31. Morrison LE, Whittaker RJ, Klepper RE, Wawrousek EF, Glembotski CC. Roles for alphaB-crystallin and HSPB2 in protecting the myocardium from ischemia-reperfusion induced damage in a KO mouse model. Am J Physiol. Heart Circ Physiol 2004;286:H847–H855.

    Article  CAS  PubMed  Google Scholar 

  32. Yu J, Zhang HF, Wu F, Li QX, Ma H, Guo WY, et al. Insulin improves cardiomyocyte contractile function through enhancement of SERCA2a activity in simulated ischemia/reperfusion1. Acta Pharmacol Sin 2006;27:919–926.

    Article  CAS  PubMed  Google Scholar 

  33. Horvathova K, Chalupa I, Sebova L, Tothova D, Vachalkova A. Protective effect of quercetin and luteolin in human melanomaHMB-2 cells. Mutat Res 2005;565:105–112.

    Article  CAS  PubMed  Google Scholar 

  34. Huang SS, Liu SM, Lin SM, Liao PH, Lin RH, Chen YC, et al. Antiarrhythmic effect of caffeic acid phenethyl ester (CAPE) on myocardial ischemia/reperfusion injury in rats. Clin Biochem 2005;38:943 947.

    Article  CAS  PubMed  Google Scholar 

  35. Tsutsui H, Kinugawa S, Matsushima S. Oxidative stress and mitochondrial DNA damage in heart failure. Circ J 2008;72:A31–A37.

    Article  PubMed  Google Scholar 

  36. Liao PH, Hung LM, Chen YH, Kuan YH, Zhang FB, Lin RH, et al. Cardioprotective effects of luteolin during ischemiareperfusion injury in rats. Circ J 2011;75:443–450.

    Article  CAS  PubMed  Google Scholar 

  37. Miura T, Miki T. GSK-3β, a therapeutic target for cardiomyocyte protection. Circ J 2009;73:1184–1192.

    Article  CAS  PubMed  Google Scholar 

  38. Hausenloy DJ, Tsang A, Mocanu MM, Yellon DM. Ischemic preconditioning protects by activating prosurvival kinases at reperfusion. Am J Physiol 2005;288:H971–H976.

    CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the excellent technical assistance of QI You-jian (Department of Physiology, Xuzhou Medical College).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dong-ye Li or Hong Sun.

Additional information

Supported by the Academic Degrees Committee and the Department of Education of Jiangsu Province (No. CXLX11-0732)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Rq., Li, Dy., Xu, Td. et al. Antioxidative effect of luteolin pretreatment on simulated ischemia/reperfusion injury in cardiomyocyte and perfused rat heart. Chin. J. Integr. Med. 23, 518–527 (2017). https://doi.org/10.1007/s11655-015-2296-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11655-015-2296-x

Keywords

Navigation